The Past, Present, and Future of Genetic Manipulation in Toxoplasma gondii

被引:34
|
作者
Wang, Jin-Lei [1 ]
Huang, Si-Yang [1 ,2 ]
Behnke, Michael S. [3 ]
Chen, Kai [1 ]
Shen, Bang [4 ]
Zhu, Xing-Quan [1 ,2 ]
机构
[1] Chinese Acad Agr Sci, Lanzhou Vet Res Inst, Key Lab Vet Parasitol Gansu Prov, State Key Lab Vet Etiol Biol, Lanzhou 730046, Gansu, Peoples R China
[2] Jiangsu Coinnovat Ctr Prevent & Control Important, Yangzhou 225009, Jiangsu, Peoples R China
[3] Louisiana State Univ, Sch Vet Med, Pathobiol Sci, Baton Rouge, LA 70803 USA
[4] Huazhong Agr Univ, Coll Vet Med, State Key Lab Agr Microbiol, Wuhan 430070, Hubei Province, Peoples R China
基金
中国国家自然科学基金;
关键词
DEPENDENT PROTEIN-KINASE; XANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE; NEGATIVE SELECTABLE MARKER; DOUBLE-STRAND BREAK; HOST-CELL INVASION; RESISTANT MUTANTS; HOMOLOGOUS RECOMBINATION; STABLE TRANSFORMATION; NUCLEASE SPECIFICITY; FLUORESCENT PROTEIN;
D O I
10.1016/j.pt.2016.04.013
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Toxoplasma gondii is a classic model for studying obligate intracellular microorganisms as various genetic manipulation tools have been developed in T. gondii over the past 20 years. Here we summarize the major strategies for T. gondii genetic manipulation including genetic crosses, insertional mutagenesis, chemical mutagenesis, homologous gene replacement, conditional knockdown techniques, and the recently developed clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. We evaluate the advantages and limitations of each of these tools in a historical perspective. We also discuss additional applications of modified CRISPR-Cas9 systems for use in T. gondii, such as regulation of gene expression, labeling of specific genomic loci, and epigenetic modifications. These approaches have the potential to revolutionize the analysis of T. gondii biology and help us to better develop new drugs and vaccines.
引用
收藏
页码:542 / 553
页数:12
相关论文
共 50 条
  • [21] The promise of toxicogenomics for genetic toxicology: past, present and future
    David, Rhiannon
    MUTAGENESIS, 2020, 35 (02) : 153 - 159
  • [22] The past, present and future of walnut genetic improvement and propagation
    Vahdati, K.
    Khorami, S. S.
    VIII INTERNATIONAL SYMPOSIUM ON WALNUT, CASHEW AND PECAN, 2021, 1318 : 251 - 268
  • [23] Genetic insights into the past, present, and future of a keystone species
    Oke, Krista B.
    Hendry, Andrew P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (02) : 344 - 346
  • [24] Genetic nature of eastern wolves: Past, present and future
    C.J. Kyle
    A.R. Johnson
    B.R. Patterson
    P.J. Wilson
    K. Shami
    S.K. Grewal
    B.N. White
    Conservation Genetics, 2006, 7
  • [25] Neural networks for genetic epidemiology: past, present, and future
    Alison A Motsinger-Reif
    Marylyn D Ritchie
    BioData Mining, 1
  • [26] Genetic predisposition to breast cancer: Past, present, and future
    Turnbull, Clare
    Rahman, Nazneen
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2008, 9 : 321 - 345
  • [27] Genetic nature of eastern wolves: Past, present and future
    Kyle, C. J.
    Johnson, A. R.
    Patterson, B. R.
    Wilson, P. J.
    Shami, K.
    Grewal, S. K.
    White, B. N.
    CONSERVATION GENETICS, 2006, 7 (02) : 273 - 287
  • [28] Causal Inference with Genetic Data: Past, Present, and Future
    Pingault, Jean-Baptiste
    Richmond, Rebecca
    Smith, George Davey
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2022, 12 (03):
  • [29] Anthropology and genetic disease: Past, present and future.
    Roberts, DF
    COLLEGIUM ANTROPOLOGICUM, 1995, 19 (02) : 279 - 288
  • [30] Eukaryotic mobile genetic elements: the past, the present, and the future
    Lyubomirskaya, NV
    Ilyin, YV
    MOLECULAR BIOLOGY, 1999, 33 (06) : 846 - 853