Predicting drug-mediated pro-arrhythmic effects using pre-drug electrocardiograms

被引:1
|
作者
Peng, Tommy [1 ]
Malik, Avinash [1 ]
Trew, Mark L. [2 ]
机构
[1] Univ Auckland, Dept Elect & Comp Engn, Auckland, New Zealand
[2] Univ Auckland, Auckland Bioengn Inst, Auckland, New Zealand
关键词
Electrocardiogram decomposition; Pro-arrhythmic risk; Gaussian Mesa Functions; Electrocardiogram prediction; INDUCED QT PROLONGATION; T-WAVE MORPHOLOGY; DYNAMICAL MODEL; ARRHYTHMIAS; RANOLAZINE; QUINIDINE; SIGNALS;
D O I
10.1016/j.bspc.2021.102712
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Altered electrocardiogram (ECG) morphology is important for assessing cardiac pro-arrhythmic risk of drugs. We propose a basis function method to predict morphological and QT, JT, Tpeak-Tend timing interval changes in ECGs due to drug effects. The method systematically decomposes ECGs for a study population recorded at varying pharmacokinetic states into Gaussian Mesa Functions (GMFs). The GMF parameters are then fit to linear mixed effects drug sensitivity models. For a new subject, post-drug GMF parameter values and ECG morphology at varying pharmacokinetic states are predicted from the pre-drug GMF parameter values using the drug sensitivity models. The proposed methodology is validated with clinical ECGs of human subjects administered Dofetilide, Quinidine, Ranolazine, and Verapamil. The datasets are obtained from the ECGRVDQ database. The proposed method predicts post-drug timing intervals not significantly different to expert annotated intervals (pair-wise t-test p > 0.05) for 153 out of 180 scenarios (drug type, hours post-dose, and ECG timing interval combinations). A comparative method based on expert annotations predicts 105 out of 180 scenarios. Importantly, realistic predictions of post-dose ECG morphology are reconstructed from predicted GMF parameters. Our study suggests that the GMF parameter space can provide important new biomarkers for assessing and visualizing drug-induced changes in ECGs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Predicting Frequencies of Drug Side Effects Using Graph Attention Networks with Multiple Features
    Zheng, Ying
    Xu, Shibo
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT II, ISBRA 2024, 2024, 14955 : 14 - 25
  • [42] Predicting Drug Side Effects Using Data Analytics and the Integration of Multiple Data Sources
    Lee, Wei-Po
    Huang, Jhih-Yuan
    Chang, Hsuan-Hao
    Lee, King-Teh
    Lai, Chao-Ti
    IEEE ACCESS, 2017, 5 : 20449 - 20462
  • [43] Predicting the toxic side effects of drug interactions using chemical structures and protein sequences
    Zhang, Liyuan
    Sheng, Yongxin
    Yang, Jinxiang
    Hu, Zuhai
    Peng, Bin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Drug reprofiling using zebrafish identifies novel compounds with potential pro-myelination effects
    Buckley, Clare E.
    Marguerie, Anita
    Roach, Alan G.
    Goldsmith, Paul
    Fleming, Angeleen
    Alderton, Wendy K.
    Franklin, Robin J. M.
    NEUROPHARMACOLOGY, 2010, 59 (03) : 149 - 159
  • [45] Predicting Drug-Induced QT Prolongation Effects Using Multi-View Learning
    Zhang, Jintao
    Huan, Jun
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2013, 12 (03) : 206 - 213
  • [46] PISTON: Predicting drug indications and side effects using topic modeling and natural language processing
    Jang, Giup
    Lee, Taekeon
    Hwang, Soyoun
    Park, Chihyun
    Ahn, Jaegyoon
    Seo, Sukyung
    Hwang, Youhyeon
    Yoon, Youngmi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 87 : 96 - 107
  • [47] Drugs in COVID-19 Clinical Trials: Predicting Transporter-Mediated Drug-Drug Interactions Using In Vitro Assays and Real-World Data
    Yee, Sook Wah
    Vora, Bianca
    Oskotsky, Tomiko
    Zou, Ling
    Jakobsen, Sebastian
    Enogieru, Osatohanmwen J.
    Koleske, Megan L.
    Kosti, Idit
    Rodin, Mattias
    Sirota, Marina
    Giacomini, Kathleen M.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 110 (01) : 108 - 122
  • [48] A high-throughput method for predicting drug effects on gut transit time using larval zebrafish
    Cassar, Steven
    Huang, Xin
    Cole, Todd
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2015, 76 : 72 - 75
  • [49] Predicting effective pro-apoptotic antileukaemic drug combinations using co-operative dynamic BH3 profiling
    Grundy, Martin
    Seedhouse, Claire
    Jones, Thomas
    Elmi, Liban
    Hall, Michael
    Graham, Adam
    Russell, Nigel
    Pallis, Monica
    PLOS ONE, 2018, 13 (01):
  • [50] DRUGS IN COVID-19 CLINICAL TRIALS: PREDICTING TRANSPORTER-MEDIATED DRUG-DRUG INTERACTIONS USING IN VITRO ASSAYS AND REAL-WORLD DATA.
    Yee, S.
    Vora, B.
    Zou, L.
    Jakobsen, S.
    Koleske, M.
    Giacomini, K.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 : S82 - S82