Automorphism Groups of Symmetric and Pseudo-real Riemann Surfaces

被引:1
|
作者
Tyszkowska, Ewa [1 ]
机构
[1] Gdansk Univ, Inst Math, Wita Stwosza 57, PL-80952 Gdansk, Poland
关键词
Riemann surface; Symmetry of a Riemann surface; Asymmetric Riemann surface; Pseudo-symmetric Riemann surface; Fuchsian groups; NEC groups;
D O I
10.1007/s00009-021-01825-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The category of smooth, irreducible, projective, complex algebraic curves is equivalent to the category of compact Riemann surfaces. We study automorphism groups of Riemann surfaces which are equivalent to complex algebraic curves with real moduli. A complex algebraic curve C has real moduli when the corresponding surface X-C admits an anti-conformal automorphism. If no such an automorphism is an involution (symmetry), then the surface X-C is called pseudo-real and the curve C is isomorphic to its conjugate, but is not definable over reals. Otherwise, the surface X-C is called symmetric and the curve C is real.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Automorphism Groups of Symmetric and Pseudo-real Riemann Surfaces
    Ewa Tyszkowska
    Mediterranean Journal of Mathematics, 2021, 18
  • [2] Automorphism Groups of Pseudo-real Riemann Surfaces of Low Genus
    Emilio BUJALANCE
    Antonio F.COSTA
    ActaMathematicaSinica, 2014, 30 (01) : 11 - 22
  • [3] Automorphism groups of pseudo-real Riemann surfaces of low genus
    Emilio Bujalance
    Antonio F. Costa
    Acta Mathematica Sinica, English Series, 2014, 30 : 11 - 22
  • [4] Automorphism Groups of Pseudo-real Riemann Surfaces of Low Genus
    Emilio BUJALANCE
    Antonio F.COSTA
    Acta Mathematica Sinica,English Series, 2014, (01) : 11 - 22
  • [5] Automorphism groups of pseudo-real Riemann surfaces of low genus
    Bujalance, Emilio
    Costa, Antonio F.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (01) : 11 - 22
  • [6] Automorphism groups of cyclic p-gonal pseudo-real Riemann surfaces
    Bujalance, Emilio
    Costa, Antonio F.
    JOURNAL OF ALGEBRA, 2015, 440 : 531 - 544
  • [7] A Class of Pseudo-Real Riemann Surfaces with Diagonal Automorphism Group
    Badr, Eslam
    ALGEBRA COLLOQUIUM, 2020, 27 (02) : 247 - 262
  • [8] Abelian Actions on Pseudo-real Riemann Surfaces
    E. Bujalance
    F. J. Cirre
    J. Rodríguez
    Mediterranean Journal of Mathematics, 2023, 20
  • [9] Abelian Actions on Pseudo-real Riemann Surfaces
    Bujalance, E.
    Cirre, F. J.
    Rodriguez, J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [10] PSEUDO-REAL RIEMANN SURFACES AND CHIRAL REGULAR MAPS
    Bujalance, Emilio
    Conder, Marston D. E.
    Costa, Antonio F.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (07) : 3365 - 3376