Automorphism groups of pseudo-real Riemann surfaces of low genus

被引:8
|
作者
Bujalance, Emilio [1 ]
Costa, Antonio F. [1 ]
机构
[1] UNED, Fac Ciencias, Dept Matemat Fundament, Madrid 28040, Spain
关键词
Riemann surface; automorphism; anticonformal automorphism; moduli space; MODULI SPACE; BRANCH LOCUS; CONNECTEDNESS;
D O I
10.1007/s10114-013-2420-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A pseudo-real Riemann surface admits anticonformal automorphisms but no anticonformal involution. We obtain the classification of actions and groups of automorphisms of pseudo-real Riemann surfaces of genera 2, 3 and 4. For instance the automorphism group of a pseudo-real Riemann surface of genus 4 is either C-4 or C-8 or the Frobenius group of order 20, and in the case of C-4 there are exactly two possible topological actions. Let M (K)(PR,g) be the set of surfaces in the moduli space M (K)(g) corresponding to pseudo-real Riemann surfaces. We obtain the equisymmetric stratification of M-PR,g(K) for genera g=2,3,4, and as a consequence we have that M-PR,g(K) is connected for g=2,3 but M-PR,4(K) has three connected components.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [1] Automorphism Groups of Pseudo-real Riemann Surfaces of Low Genus
    Emilio BUJALANCE
    Antonio F.COSTA
    ActaMathematicaSinica, 2014, 30 (01) : 11 - 22
  • [2] Automorphism groups of pseudo-real Riemann surfaces of low genus
    Emilio Bujalance
    Antonio F. Costa
    Acta Mathematica Sinica, English Series, 2014, 30 : 11 - 22
  • [3] Automorphism Groups of Pseudo-real Riemann Surfaces of Low Genus
    Emilio BUJALANCE
    Antonio F.COSTA
    Acta Mathematica Sinica,English Series, 2014, (01) : 11 - 22
  • [4] Automorphism Groups of Symmetric and Pseudo-real Riemann Surfaces
    Ewa Tyszkowska
    Mediterranean Journal of Mathematics, 2021, 18
  • [5] Automorphism Groups of Symmetric and Pseudo-real Riemann Surfaces
    Tyszkowska, Ewa
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [6] Automorphism groups of cyclic p-gonal pseudo-real Riemann surfaces
    Bujalance, Emilio
    Costa, Antonio F.
    JOURNAL OF ALGEBRA, 2015, 440 : 531 - 544
  • [7] A Class of Pseudo-Real Riemann Surfaces with Diagonal Automorphism Group
    Badr, Eslam
    ALGEBRA COLLOQUIUM, 2020, 27 (02) : 247 - 262
  • [8] Minimal genus problem for pseudo-real Riemann surfaces
    Czesław Bagiński
    Grzegorz Gromadzki
    Archiv der Mathematik, 2010, 95 : 481 - 492
  • [9] Minimal genus problem for pseudo-real Riemann surfaces
    Baginski, Czeslaw
    Gromadzki, Grzegorz
    ARCHIV DER MATHEMATIK, 2010, 95 (05) : 481 - 492
  • [10] Abelian Actions on Pseudo-real Riemann Surfaces
    E. Bujalance
    F. J. Cirre
    J. Rodríguez
    Mediterranean Journal of Mathematics, 2023, 20