Cluster aggregate inequality and multi-level hierarchical clustering

被引:0
|
作者
Ding, C [1 ]
He, XF [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that (1) in hierarchical clustering, many linkage functions satisfy a cluster aggregate inequality, which allows an exact O(N-2) multi-level (using mutual nearest neighbor) implementation of the standard O(N-3) agglomerative hierarchical clustering algorithm. (2) a desirable close friends cohesion of clusters can be translated into kNN consistency which is guaranteed by the multi-level algorithm; (3) For similarity-based linkage functions, the multi-level algorithm is naturally implemented as graph contraction. The effectiveness of our algorithms is demonstrated on a number of real life applications.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [41] Confounding by subject and by cluster in hierarchical (multi-level) random-effects models for longitudinal data.
    Localio, A. R.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2007, 165 (11) : S139 - S139
  • [42] Multi-Level Clustering Algorithm for Star/Galaxy Separation
    Du, Hui
    Wang, Yuping
    Ren, Chuchu
    Zhong, Junkun
    Gao, Xiao-Zhi
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 134 - 137
  • [43] A Topic Detection Approach Based on Multi-level Clustering
    Song, Yang
    Du, Junping
    Hou, Lisha
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3834 - 3838
  • [44] NONPARAMETRIC MULTI-LEVEL CLUSTERING OF HUMAN EPILEPSY SEIZURES
    Wulsin, Drausin F.
    Jensen, Shane T.
    Litt, Brian
    ANNALS OF APPLIED STATISTICS, 2016, 10 (02): : 667 - 689
  • [45] Multi-level Genetic Programming for Fault Data Clustering
    Feng, Qi
    Lian, Haowei
    Zhu, Jindong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 520 - 524
  • [46] Multi-level Graph Drawing Using Infomap Clustering
    Hong, Seok-Hee
    Eades, Peter
    Torkel, Marnijati
    Wang, Ziyang
    Chae, David
    Hong, Sungpack
    Langerenken, Daniel
    Chafi, Hassan
    GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 139 - 146
  • [47] Multi-Level Representation Learning for Deep Subspace Clustering
    Kheirandishfard, Mohsen
    Zohrizadeh, Fariba
    Kamangar, Farhad
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2028 - 2037
  • [48] Performance-driven recursive multi-level clustering
    Dehkordi, ME
    Brown, SD
    2003 IEEE INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), PROCEEDINGS, 2003, : 262 - 269
  • [49] Deep graph clustering with multi-level subspace fusion
    Li, Wang
    Wang, Siwei
    Guo, Xifeng
    Zhu, En
    PATTERN RECOGNITION, 2023, 134
  • [50] Multi-Level Compare-Aggregate Model for Text Matching
    Xu, Chunlin
    Wang, Hui
    Lin, Zhiwei
    Wu, Shengli
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,