Vertical rescaled Cheeger-Gromoll metric and harmonicity on the cotangent bundle

被引:4
|
作者
Zagane, Abderrahim [1 ]
Gezer, Aydin [2 ]
机构
[1] Univ Relizane, Dept Math, Relizane 48000, Algeria
[2] Ataturk Univ, Dept Math, TR-25240 Erzurum, Turkey
来源
关键词
cotangent bundles; horizontal lift and vertical lift; vertical rescaled Cheeger-Gromoll metric; harmonic maps;
D O I
10.32513/asetmj/19322008221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the harmonicity on the cotangent bundle equipped with vertical rescaled Cheeger-Gromoll metric which rescales the vertical part by a non-zero differentiable function f. We establish a necessary and sufficient condition under which a covector field is harmonic with respect to this metric. We also construct some examples of harmonic vector fields. Finally, we study the harmonicity of a map between a Riemannian manifold and a cotangent bundle of another Riemannian manifold and vice versa.
引用
收藏
页码:11 / 29
页数:19
相关论文
共 50 条
  • [31] Paracontact Tangent Bundles with Cheeger-Gromoll Metric (vol 12, pg 497, 2015)
    Kazan, Ahmet
    Karadag, H. Bayram
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 883 - 884
  • [32] Conformality of a differential with respect to Cheeger-Gromoll type metrics
    Kozlowski, Wojciech
    Niedziaomski, Kamil
    GEOMETRIAE DEDICATA, 2012, 157 (01) : 227 - 237
  • [33] How to produce a Ricci flow via Cheeger-Gromoll exhaustion
    Cabezas-Rivas, Esther
    Wilking, Burkhard
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (12) : 3153 - 3194
  • [34] ON THE GEOMETRY OF THE TANGENT BUNDLE WITH VERTICAL RESCALED METRIC
    Dida, H. M.
    Hathout, F.
    Azzouz, A.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 222 - 235
  • [35] Cheeger-Gromoll splitting theorem for the Bakry-Emery Ricci tensor
    Tang, Junhan
    Wu, Jia-Yong
    ARCHIV DER MATHEMATIK, 2021, 117 (06) : 697 - 708
  • [36] Cheeger-gromoll type metrics on the (1,1)-tensor bundles
    Peyghan, E.
    Tayebi, A.
    Nourmohammadifar, L.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2013, 48 (06): : 247 - 258
  • [37] Cheeger-gromoll type metrics on the (1,1)-tensor bundles
    E. Peyghan
    A. Tayebi
    L. Nourmohammadifar
    Journal of Contemporary Mathematical Analysis, 2013, 48 : 247 - 258
  • [38] Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type
    Benyounes, M.
    Loubeau, E.
    Wood, C. M.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (03) : 322 - 334
  • [39] Paracontact Tangent Bundles with Cheeger–Gromoll Metric
    Ahmet Kazan
    H. Bayram. Karadağ
    Mediterranean Journal of Mathematics, 2015, 12 : 497 - 523