Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems

被引:5
|
作者
Dobson, P. [1 ]
Fursov, I [2 ]
Lord, G. [1 ]
Ottobre, M. [1 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Inst Petr Engn, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo methods; Non-reversible Markov chains; Subsurface reservoir simulation; High-dimensional sampling; VARIANCE REDUCTION;
D O I
10.1007/s10596-020-09947-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compare numerically the performance of reversible and non-reversible Markov Chain Monte Carlo algorithms for high-dimensional oil reservoir problems; because of the nature of the problem at hand, the target measures from which we sample are supported on bounded domains. We compare two strategies to deal with bounded domains, namely reflecting proposals off the boundary and rejecting them when they fall outside of the domain. We observe that for complex high-dimensional problems, reflection mechanisms outperform rejection approaches and that the advantage of introducing non-reversibility in the Markov Chain employed for sampling is more and more visible as the dimension of the parameter space increases.
引用
收藏
页码:1301 / 1313
页数:13
相关论文
共 50 条
  • [31] Control variates for estimation based on reversible Markov chain Monte Carlo samplers
    Dellaportas, Petros
    Kontoyiannis, Ioannis
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2012, 74 : 133 - 161
  • [32] A reversible jump Markov chain Monte Carlo algorithm for analysis of functional neuroimages
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 133 - 136
  • [33] Applying kriging proxies for Markov chain Monte Carlo in reservoir simulation
    Fursov, Ilya
    Christie, Mike
    Lord, Gabriel
    COMPUTATIONAL GEOSCIENCES, 2020, 24 (04) : 1725 - 1746
  • [34] Applying kriging proxies for Markov chain Monte Carlo in reservoir simulation
    Ilya Fursov
    Mike Christie
    Gabriel Lord
    Computational Geosciences, 2020, 24 : 1725 - 1746
  • [35] Non-reversible Metastable Diffusions with Gibbs Invariant Measure II: Markov Chain Convergence
    Jungkyoung Lee
    Insuk Seo
    Journal of Statistical Physics, 2022, 189
  • [36] Non-reversible Metastable Diffusions with Gibbs Invariant Measure II: Markov Chain Convergence
    Lee, Jungkyoung
    Seo, Insuk
    JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (02)
  • [37] Robustness and applicability of Markov chain Monte Carlo algorithms for eigenvalue problems
    Dimov, I. T.
    Philippe, B.
    Karaivanova, A.
    Weihrauch, C.
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (08) : 1511 - 1529
  • [38] Comparison of Markov Chain Monte Carlo sampling algorithms in subset simulation
    Lan C.
    Xu Z.
    Ma J.
    Zhao X.
    Li H.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2022, 55 (10): : 33 - 45and79
  • [39] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    MARY KATHRYN COWLES
    JEFFREY S. ROSENTHAL
    Statistics and Computing, 1998, 8 : 115 - 124
  • [40] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    Cowles, MK
    Rosenthal, JS
    STATISTICS AND COMPUTING, 1998, 8 (02) : 115 - 124