Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems

被引:5
|
作者
Dobson, P. [1 ]
Fursov, I [2 ]
Lord, G. [1 ]
Ottobre, M. [1 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Inst Petr Engn, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo methods; Non-reversible Markov chains; Subsurface reservoir simulation; High-dimensional sampling; VARIANCE REDUCTION;
D O I
10.1007/s10596-020-09947-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compare numerically the performance of reversible and non-reversible Markov Chain Monte Carlo algorithms for high-dimensional oil reservoir problems; because of the nature of the problem at hand, the target measures from which we sample are supported on bounded domains. We compare two strategies to deal with bounded domains, namely reflecting proposals off the boundary and rejecting them when they fall outside of the domain. We observe that for complex high-dimensional problems, reflection mechanisms outperform rejection approaches and that the advantage of introducing non-reversibility in the Markov Chain employed for sampling is more and more visible as the dimension of the parameter space increases.
引用
收藏
页码:1301 / 1313
页数:13
相关论文
共 50 条
  • [1] Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems
    P. Dobson
    I. Fursov
    G. Lord
    M. Ottobre
    Computational Geosciences, 2020, 24 : 1301 - 1313
  • [2] On the Convergence Time of Some Non-Reversible Markov Chain Monte Carlo Methods
    Vialaret, Marie
    Maire, Florian
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 1349 - 1387
  • [3] On the Convergence Time of Some Non-Reversible Markov Chain Monte Carlo Methods
    Marie Vialaret
    Florian Maire
    Methodology and Computing in Applied Probability, 2020, 22 : 1349 - 1387
  • [4] Non-reversible Monte Carlo simulations of spin models
    Fernandes, Heitor C. M.
    Weigel, Martin
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) : 1856 - 1859
  • [5] REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO METHODS AND SEGMENTATION ALGORITHMS IN HIDDEN MARKOV MODELS
    Paroli, R.
    Spezia, L.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2010, 52 (02) : 151 - 166
  • [6] Reversible Jump Markov Chain Monte Carlo for Deconvolution
    Dongwoo Kang
    Davide Verotta
    Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 263 - 287
  • [7] Reversible jump Markov chain Monte Carlo for deconvolution
    Kang, Dongwoo
    Verotta, Davide
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 263 - 287
  • [8] ERGODICITY OF MARKOV CHAIN MONTE CARLO WITH REVERSIBLE PROPOSAL
    Kamatani, K.
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (02) : 638 - 654
  • [9] Analysis of a non-reversible Markov chain speedup by a single edge
    Gerencser, Balazs
    JOURNAL OF APPLIED PROBABILITY, 2023, 60 (02) : 642 - 660
  • [10] REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO FOR PULSE FITTING
    Goodyer, Fred
    Ahmad, Bashar, I
    Godsill, Simon
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024), 2024, : 9556 - 9560