ACTIVE MIXING NOZZLE FOR MULTI-MATERIAL AND MULTI-SCALE 3D PRINTING

被引:0
|
作者
Lan, Hongbo [1 ]
机构
[1] Qingdao Technol Univ, Qindao Engn Res Ctr Printing 3D, Qingdao, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
SOFT;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-scale and multi-material 3D printing is new frontier in additive manufacturing. It has shown great potential to implement the simultaneous and full control for fabricated object including external geometry, internal architecture, functional surface, material composition and ratio as well as gradient distribution, feature size ranging from nano, micro, to marco-scale, embedded components and electro-circuit, etc. Furthermore, it has the ability to construct the heterogeneous and hierarchical structured object with tailored properties and multiple functionalities which cannot be achieved through the existing technologies. That paves the way and may result in great breakthrough in various applications, e.g., functional tissue and organ, functionally graded material/structure, wearable devices, soft robot, functionally embedded electronics, metamaterial, multi-functionality product, etc. However, very few of the established additive manufacturing processes have now the capability to implement the multi-material and multi scale 3D printing. This paper presented a single nozzle-based multi-scale and multi-material 3D printing process by integrating the electrohydrodynamic jet (E-jet) printing and the active mixing multimaterial nozzle. The proposed AM technology has the capability to create multifunctional heterogeneously structured objects with control of the macro scale external geometry and micro-scale internal structures as well as functional surface features, particularly, the potential to dynamically mix, grade and vary the ratios of different materials. An active mixing nozzle, as a core functional component of the 3D printer, is systematically investigated by combining with the theoretical analysis, numerical simulation and experimental verification. The study aims at exploring a feasible solution to implement the multi-scale and multi material 3D printing at low cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Magnetic properties of ferromagnetic materials produced by 3D multi-material printing
    Trnka, Nikolaus
    Rudolph, Johannes
    Werner, Ralf
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 326 - 331
  • [32] MultiFab: A Machine Vision Assisted Platform for Multi-material 3D Printing
    Sitthi-Amorn, Pitchaya
    Ramos, Javier E.
    Wang, Yuwang
    Kwan, Joyce
    Lan, Justin
    Wang, Wenshou
    Matusik, Wojciech
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [33] Omnidirectional and Multi-Material In Situ 3D Printing Using Acoustic Levitation
    Chen, Hongyi
    Bansal, Shubhi
    Plasencia, Diego Martinez
    Di-Silvio, Lucy
    Huang, Jie
    Subramanian, Sriram
    Hirayama, Ryuji
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [34] Multi-material 3D Printing in Brachytherapy- Prototyping Teaching Tools
    Campelo, S.
    Subashi, E.
    Chang, Z.
    Meltsner, S. G.
    Chino, J. P.
    Craciunescu, O. I.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E437 - E437
  • [35] Coating process of multi-material composite sand mold 3D printing
    Zhong-de Shan
    Zhi Guo
    Dong Du
    Feng Liu
    ChinaFoundry, 2017, 14 (06) : 498 - 505
  • [36] Recent Advances in Multi-Material 3D Printing of Functional Ceramic Devices
    Chen, Hui
    Guo, Liang
    Zhu, Wenbo
    Li, Chunlai
    POLYMERS, 2022, 14 (21)
  • [37] Multi-material vat photopolymerization 3D printing: a review of mechanisms and applications
    Saroj Subedi
    Siying Liu
    Wenbo Wang
    S. M. Abu Naser Shovon
    Xiangfan Chen
    Henry Oliver T. Ware
    npj Advanced Manufacturing, 1 (1):
  • [38] 3D printing of multi-material composites with tunable shape memory behavior
    Yuan, Chao
    Wang, Fangfang
    Qi, Biyun
    Ding, Zhen
    Rosen, David W.
    Ge, Qi
    MATERIALS & DESIGN, 2020, 193
  • [39] The Research on Multi-Material 3D Vascularized Network Integrated Printing Technology
    Yang, Shuai
    Tang, Hao
    Feng, Chunmei
    Shi, Jianping
    Yang, Jiquan
    MICROMACHINES, 2020, 11 (03)
  • [40] Electrochemically driven multi-material 3D-printing
    Ambrosi, Adriano
    Webster, Richard D.
    Pumera, Martin
    APPLIED MATERIALS TODAY, 2020, 18