Robust adaptive control scheme for optical tracking telescopes with unknown disturbances

被引:9
|
作者
Mei, Rong [1 ]
Chen, Mou [2 ]
Guo, William W. [3 ]
机构
[1] Nanjing Forest Police Coll, Criminal Invest Dept, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Peoples R China
[3] Cent Queensland Univ, Sch Engn & Technol, North Rockhampton, Qld 4702, Australia
来源
OPTIK | 2015年 / 126卷 / 11-12期
关键词
Optical tracking telescope; Neural network; Nonlinear disturbance observer; Robust adaptive control; Tracking control; OBSERVER-BASED CONTROL; UNCERTAIN NONLINEAR-SYSTEMS; SLIDING MODE CONTROL; AUTOPILOT DESIGN; NEURAL-CONTROL; FUZZY CONTROL; SPACECRAFT; SUBJECT;
D O I
10.1016/j.ijleo.2015.02.088
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a robust adaptive control scheme is proposed for optical tracking telescopes with parametric uncertainty, unknown external disturbance and input saturation. To improve tracking performance of this robust adaptive control scheme, a nonlinear disturbance observer (NDO) is employed to tackle the integrated effect amalgamated from unknown parameters, unknown external disturbance and input saturation. At the same time, the radial basis function neural network (RBFNN) is introduced to approximate the input of an unknown function. Utilizing the estimated outputs of NDO and RBFNN, the robust adaptive control scheme is developed for optical tracking telescopes. Stability of the closed-loop system is rigourously proved via Lyapunov analysis and the convergent tracking emir is guaranteed for optical tracking telescopes. Numerical simulation results are presented to illustrate the effectiveness of the proposed robust adaptive control scheme based on RBFNN and NDO for the uncertain dynamic of optical tracking telescopes. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1185 / 1190
页数:6
相关论文
共 50 条
  • [21] Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances
    Chen, Lulu
    Liu, Zhenbao
    Gao, Honggang
    Wang, Guodong
    ISA TRANSACTIONS, 2022, 122 : 114 - 125
  • [22] Adaptive robust neural tracking control of a class of unknown nonlinear systems
    Liao, TL
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1998, 29 (07) : 731 - 743
  • [23] Distributed Robust Formation Tracking Control for Quadrotor UAVs with Unknown Parameters and Uncertain Disturbances
    Xu, Linxing
    Li, Yang
    AEROSPACE, 2023, 10 (10)
  • [24] Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances
    Yang, Xinxin
    Ge, Shuzhi Sam
    He, Wei
    INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (04) : 969 - 988
  • [25] Robust Fuzzy Adaptive Output Feedback Optimal Tracking Control for Dynamic Positioning of Marine Vessels with Unknown Disturbances and Uncertain Dynamics
    Gao, Xiaoyang
    Li, Tieshan
    Yuan, Liang'en
    Bai, Weiwei
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (07) : 2283 - 2296
  • [26] Robust Fuzzy Adaptive Output Feedback Optimal Tracking Control for Dynamic Positioning of Marine Vessels with Unknown Disturbances and Uncertain Dynamics
    Xiaoyang Gao
    Tieshan Li
    Liang’en Yuan
    Weiwei Bai
    International Journal of Fuzzy Systems, 2021, 23 : 2283 - 2296
  • [27] Robust adaptive compensation of periodic disturbances with unknown frequency
    Marino, Riccardo
    Tomei, Patrizio
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 7528 - 7533
  • [28] Robust Adaptive Compensation of Periodic Disturbances With Unknown Frequency
    Marino, Riccardo
    Tomei, Patrizio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (10) : 2760 - 2765
  • [29] Robust NN Control for an Aircraft with Unknown Disturbances
    Wang Li
    Kiu Chunsheng
    Gong Huajun
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3002 - 3006
  • [30] Semitensor product based adaptive control for attitude tracking of spacecraft with unknown external disturbances
    Zhang, Xuxi
    Journal of Control Theory and Applications, 2012, 10 (03): : 292 - 296