Video Summarization using Convolutional Neural Network and Random Forest Classifier

被引:0
|
作者
Nair, Madhu S. [1 ]
Mohan, Jesna [2 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Sci, Kochi 682022, Kerala, India
[2] Mar Baselios Coll Engn & Technol Nalanchira, Dept Comp Sci, Thiruvananthapuram 695015, Kerala, India
关键词
Video Summarization; Key-frames; non-Keyframes; Convolutional Neural Network (CNN); Random Forest Classifer;
D O I
10.1109/tencon.2019.8929724
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video summarization methods aim to generate a shortened representation of the original video. A novel method to extract key-frames based on Convolutional Neural Network and Random Forest Classifier is presented in this paper. The method processes videos on frame by frame basis. The redundant frames are first eliminated based on displacement vectors between the consecutive frames. The high-level feature vectors are extracted using CNN. The feature descriptors corresponding to frames are further classified into key-frames and non-keyframes using the Random Forest Classifier. The method is tested on two benchmark datasets: VSUMM and OVP. The proposed approach attains better results compared to other state-of-the-art video summarization techniques. The results show that the method is able to generate high quality summaries consistently for videos of all categories.
引用
收藏
页码:476 / 480
页数:5
相关论文
共 50 条
  • [21] Video Compressed Sensing Using a Convolutional Neural Network
    Shi, Wuzhen
    Liu, Shaohui
    Jiang, Feng
    Zhao, Debin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 425 - 438
  • [22] RANDOM FOREST CLASSIFIER BASED MULTI-DOCUMENT SUMMARIZATION SYSTEM
    John, Ansamma
    Wilscy, M.
    2013 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2013, : 31 - 36
  • [23] Hierarchical Recurrent Neural Network for Video Summarization
    Zhao, Bin
    Li, Xuelong
    Lu, Xiaoqiang
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 863 - 871
  • [24] Lightweight Arrhythmia Classifier Using Hybrid Compressed Convolutional Neural Network
    Xu, Yifan
    Liu, Hao
    2023 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, ICBCB, 2023, : 64 - 70
  • [25] Transforming Convolutional Neural Network to an Interpretable Classifier
    Tamajka, Martin
    Benesova, Wanda
    Kompanek, Matej
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2019), 2019, : 255 - 259
  • [26] Deep Convolutional Generalized Classifier Neural Network
    Sarigul, Mehmet
    Ozyildirim, B. Melis
    Avci, Mutlu
    NEURAL PROCESSING LETTERS, 2020, 51 (03) : 2839 - 2854
  • [27] Convolutional neural network using VHDL to train an object classifier on an image
    Nino Carmonal, Cesar Arturo
    Sanchez-Chero, Manuel-Jesus
    Ortiz Ortiz, Emanuel
    Sernaque Julca, Juan Carlos
    Risco Ipanaque, Cecilia Lizeth
    REVISTA DE LA UNIVERSIDAD DEL ZULIA, 2021, 12 (32): : 240 - 260
  • [28] A convolutional neural network neutrino event classifier
    Aurisano, A.
    Radovic, A.
    Rocco, D.
    Himmel, A.
    Messier, M. D.
    Niner, E.
    Pawloski, G.
    Psihas, F.
    Sousa, A.
    Vahle, P.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [29] Deep Convolutional Generalized Classifier Neural Network
    Mehmet Sarigul
    B. Melis Ozyildirim
    Mutlu Avci
    Neural Processing Letters, 2020, 51 : 2839 - 2854
  • [30] Random Forest Feature Selection and Back Propagation Neural Network to Detect Fire Using Video
    Liang, Jin-Xing
    Zhao, Jian-Fu
    Sun, Ning
    Shi, Bao-Jun
    JOURNAL OF SENSORS, 2022, 2022