Improving Micro-video Recommendation via Contrastive Multiple Interests

被引:9
|
作者
Li, Beibei [1 ]
Jin, Beihong [1 ]
Song, Jiageng [1 ]
Yu, Yisong [1 ]
Zheng, Yiyuan [1 ]
Zhuo, Wei [2 ]
机构
[1] Chinese Acad Sci, State Key Lab Comp Sci, Inst Software, Univ Chinese Acad Sci, Beijing, Peoples R China
[2] MX Media Co Ltd, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Micro-video recommendation; Contrastive learning; Multi-interest learning;
D O I
10.1145/3477495.3531861
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid increase of micro-video creators and viewers, how to make personalized recommendations from a large number of candidates to viewers begins to attract more and more attention. However, existing micro-video recommendation models rely on expensive multi-modal information and learn an overall interest embedding that cannot reflect the user's multiple interests in micro-videos. Recently, contrastive learning provides a new opportunity for refining the existing recommendation techniques. Therefore, in this paper, we propose to extract contrastive multi-interests and devise a micro-video recommendation model CMI. Specifically, CMI learns multiple interest embeddings for each user from his/her historical interaction sequence, in which the implicit orthogonal micro-video categories are used to decouple multiple user interests. Moreover, it establishes the contrastive multi-interest loss to improve the robustness of interest embeddings and the performance of recommendations. The results of experiments on two micro-video datasets demonstrate that CMI achieves state-of-the-art performance over existing baselines.
引用
收藏
页码:2377 / 2381
页数:5
相关论文
共 50 条
  • [21] User-Video Co-Attention Network for Personalized Micro-video Recommendation
    Liu, Shang
    Chen, Zhenzhong
    Liu, Hongyi
    Hu, Xinghai
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 3020 - 3026
  • [22] LGA: latent genre aware micro-video recommendation on social media
    Ma, Jingwei
    Li, Guang
    Zhong, Mingyang
    Zhao, Xin
    Zhu, Lei
    Li, Xue
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 2991 - 3008
  • [23] Concept-Aware Denoising Graph Neural Network for Micro-Video Recommendation
    Liu, Yiyu
    Liu, Qian
    Tian, Yu
    Wang, Changping
    Niu, Yanan
    Song, Yang
    Li, Chenliang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1099 - 1108
  • [24] Implicit Rating Methods Based on Interest Preferences of Categories for Micro-Video Recommendation
    Chen, Jie
    Peng, Junjie
    Qi, Lizhe
    Chen, Gan
    Zhang, Wenqiang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 371 - 381
  • [25] A Vlogger-augmented Graph Neural Network Model for Micro-video Recommendation
    Lai, Weijiang
    Jin, Beihong
    Li, Beibei
    Zheng, Yiyuan
    Zhao, Rui
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI, 2023, 14174 : 684 - 699
  • [26] A survey of micro-video analysis
    Guo, Jie
    Gong, Rui
    Ma, Yuling
    Liu, Meng
    Xi, Xiaoming
    Nie, Xiushan
    Yin, Yilong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 32191 - 32212
  • [27] A survey of micro-video analysis
    Jie Guo
    Rui Gong
    Yuling Ma
    Meng Liu
    Xiaoming Xi
    Xiushan Nie
    Yilong Yin
    Multimedia Tools and Applications, 2024, 83 : 32191 - 32212
  • [28] MMGCN: Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video
    Wei, Yinwei
    Wang, Xiang
    Nie, Liqiang
    He, Xiangnan
    Hong, Richang
    Chua, Tat-Seng
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1437 - 1445
  • [29] SRDPR: Social Relation-driven Dynamic network for Personalized micro-video Recommendation
    Ma, Jingwei
    Bian, Kangkang
    Wen, Jiahui
    Xu, Yang
    Zhong, Mingyang
    Zhu, Lei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 226
  • [30] Micro-Video Popularity Prediction Via Multimodal Variational Information Bottleneck
    Xie, Jiayi
    Zhu, Yaochen
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 24 - 37