A Bayesian approach to the semi-analytic model of galaxy formation: methodology

被引:76
|
作者
Lu, Yu [1 ,2 ]
Mo, H. J. [2 ]
Weinberg, Martin D. [2 ]
Katz, Neal [2 ]
机构
[1] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA
[2] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
methods: numerical; methods: statistical; galaxies: evolution; galaxies: formation; galaxies: luminosity function; mass function; DARK-MATTER HALOES; STAR-FORMATION LAW; STELLAR MASS; HIERARCHICAL FORMATION; BLACK-HOLES; EVOLUTION; DEPENDENCE; ACCRETION; COLLAPSE; SIMULATIONS;
D O I
10.1111/j.1365-2966.2011.19170.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We believe that a wide range of physical processes conspire to shape the observed galaxy population, but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multidimensional parametrizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference-based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper, we develop a SAM in the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov chain Monte Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterize galaxy formation in the current A cold dark matter cosmology using the stellar mass function of galaxies as an observational constraint. We find that the posterior probability distribution is both topologically complex and degenerate in some important model parameters, suggesting that thorough explorations of the parameter space are needed to understand the models. We also demonstrate that because of the model degeneracy, adopting a narrow prior strongly restricts the model. Therefore, the inferences based on SAMs are conditional to the model adopted. Using synthetic data tomimic systematic errors in the stellar mass function, we demonstrate that an accurate observational error model is essential to meaningful inference.
引用
收藏
页码:1949 / 1964
页数:16
相关论文
共 50 条
  • [31] The MillenniumTNG Project: semi-analytic galaxy formation models on the past lightcone
    Barrera, Monica
    Springel, Volker
    White, Simon D. M.
    Hernandez-Aguayo, Cesar
    Hernquist, Lars
    Frenk, Carlos
    Pakmor, Ruediger
    Ferlito, Fulvio
    Hadzhiyska, Boryana
    Delgado, Ana Maria
    Kannan, Rahul
    Bose, Sownak
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (04) : 6312 - 6335
  • [32] The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model
    Brennan, Ryan
    Pandya, Viraj
    Somerville, Rachel S.
    Barro, Guillermo
    Bluck, Asa F. L.
    Taylor, Edward N.
    Wuyts, Stijn
    Bell, Eric F.
    Dekel, Avishai
    Faber, Sandra
    Ferguson, Henry C.
    Koekemoer, Anton M.
    Kurczynski, Peter
    McIntosh, Daniel H.
    Newman, Jeffrey A.
    Primack, Joel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (01) : 619 - 640
  • [33] SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS
    Croton, Darren J.
    Stevens, Adam R. H.
    Tonini, Chiara
    Garel, Thibault
    Bernyk, Maksym
    Bibiano, Antonio
    Hodkinson, Luke
    Mutch, Simon J.
    Poole, Gregory B.
    Shattow, Genevieve M.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2016, 222 (02):
  • [34] What is the right way to quench star formation in semi-analytic models of galaxy formation?
    Yu Luo
    Xi Kang
    ResearchinAstronomyandAstrophysics, 2017, 17 (02) : 9 - 18
  • [35] What is the right way to quench star formation in semi-analytic models of galaxy formation?
    Luo, Yu
    Kang, Xi
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2017, 17 (02)
  • [36] Combining Semi-Analytic Models of Galaxy Formation with Simulations of Galaxy Clusters: the Need for AGN Heating
    Short, C. J.
    Thomas, P. A.
    MONSTER'S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS, 2009, 1201 : 9 - 12
  • [37] Galaxy modelling II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation
    Devriendt, JEG
    Guiderdoni, B
    ASTRONOMY & ASTROPHYSICS, 2000, 363 (03) : 851 - 862
  • [38] HI Gas in Disk and Dwarf Galaxies in the Semi-analytic Models of Galaxy Formation
    Fu, Jian
    Wang, Jing
    Luo, Yu
    FROM INTERSTELLAR CLOUDS TO STAR-FORMING GALAXIES: UNIVERSAL PROCESSES?, 2015, (315):
  • [39] CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION
    Ruiz, Andres N.
    Corae, Sofia A.
    Padilla, Nelson D.
    Dominguez, Mariano J.
    Vega-Martinez, Cristian A.
    Tecce, Tomas E.
    Orsi, Alvaro
    Yaryura, Yamila
    Lambas, Diego Garcia
    Gargiulo, Ignacio D.
    Arancibia, Alejandra M. Munoz
    ASTROPHYSICAL JOURNAL, 2015, 801 (02):
  • [40] GALICS -: I.: A hybrid N-body/semi-analytic model of hierarchical galaxy formation
    Hatton, S
    Devriendt, JEG
    Ninin, S
    Bouchet, FR
    Guiderdoni, B
    Vibert, D
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 343 (01) : 75 - 106