Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

被引:61
|
作者
Zhang, Ning [1 ]
Yin, Shao-You [2 ]
Zhang, Li-Zhi [1 ,3 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Educ Minist, Key Lab Enhanced Heat Transfer & Energy Conservat, Guangzhou 510640, Guangdong, Peoples R China
[2] Shunde Polytech, Heat Pump Engn & Technol Dev Ctr Guangdong Univ, Foshan 528333, Peoples R China
[3] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
Heat pump; Hollow fiber membrane; Liquid desiccant; Two-stage; System performance; COOLING SYSTEM; MASS-TRANSFER; HVAC SYSTEMS; ENERGY; REGENERATION; OPTIMIZATION; TEMPERATURE; EXCHANGERS; SIMULATION; CHILLERS;
D O I
10.1016/j.apenergy.2016.07.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 50 条
  • [41] Investigation of a solar energy driven and hollow fiber membrane-based humidification-dehumidification desalination system
    Li, Guo-Pei
    Zhang, Li-Zhi
    APPLIED ENERGY, 2016, 177 : 393 - 408
  • [42] Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances
    Liu, Xiaoli
    Qu, Ming
    Liu, Xiaobing
    Wang, Lingshi
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 110 : 444 - 466
  • [43] Application of Heat Pump-driven Two-stage Desiccant Wheel System in Office Buildings
    Tu, Rang
    Liu, Xiaohua
    Zhang, Tao
    Jiang, Yi
    ASHRAE TRANSACTIONS 2014, VOL 120, PT 1, 2014, 120
  • [44] Review of liquid desiccant air dehumidification systems coupled with heat pump: System configurations, component design, and performance
    Venegas, Tomas
    Qu, Ming
    Wang, Lingshi
    Liu, Xiaobing
    Gluesenkamp, Kyle
    Gao, Zhiming
    ENERGY AND BUILDINGS, 2023, 278
  • [45] Conjugate heat and mass transfer in a hollow fiber membrane module for liquid desiccant air dehumidification: A free surface model approach
    Zhang, Li-Zhi
    Huang, Si-Min
    Chi, Jun-Hui
    Pei, Li-Xia
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (13-14) : 3789 - 3799
  • [46] A two-stage liquid desiccant dehumidification system by the cascade utilization of low-temperature heat for industrial applications
    Su, Bosheng
    Han, Wei
    Sui, Jun
    Jin, Hongguang
    APPLIED ENERGY, 2017, 207 : 643 - 653
  • [48] Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system
    Bai, Hongyu
    Zhu, Jie
    Chen, Xiangjie
    Chu, Junze
    Cui, Yuanlong
    Yan, Yuying
    APPLIED ENERGY, 2020, 258
  • [49] Experimental investigation of a counter-flow heat pump driven liquid desiccant dehumidification system
    Liu, Xiaohua
    Xie, Ying
    Zhang, Tao
    Chen, Liangliang
    Cong, Lin
    ENERGY AND BUILDINGS, 2018, 179 : 223 - 238
  • [50] Experimental study on a fresh air heat pump desiccant dehumidification system using rejected heat
    Chai, Shaowei
    Zhao, Yao
    Ge, Tianshu
    Dai, Yanjun
    APPLIED THERMAL ENGINEERING, 2020, 179