Statistical considerations for cross-sectional HIV incidence estimation based on recency test

被引:5
|
作者
Gao, Fei [1 ,2 ]
Bannick, Marlena [3 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1100 Fairview Ave N M2-C200, Seattle, WA 98109 USA
[2] Fred Hutchinson Canc Res Ctr, Publ Hlth Sci Div, Seattle, WA 98109 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
biomarker; HIV; incidence; prevalence; recency assay; UNITED-STATES; VIRAL LOAD; INFECTIONS; BED; COHORT; ASSAY;
D O I
10.1002/sim.9296
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Longitudinal cohorts to determine the incidence of HIV infection are logistically challenging, so researchers have sought alternative strategies. Recency test methods use biomarker profiles of HIV-infected subjects in a cross-sectional sample to infer whether they are "recently" infected and to estimate incidence in the population. Two main estimators have been used in practice: one that assumes a recency test is perfectly specific, and another that allows for false-recent results. To date, these commonly used estimators have not been rigorously studied with respect to their assumptions and statistical properties. In this article, we present a theoretical framework with which to understand these estimators and interrogate their assumptions, and perform a simulation study and data analysis to assess the performance of these estimators under realistic HIV epidemiological dynamics. We find that the snapshot estimator and the adjusted estimator perform well when their corresponding assumptions hold. When assumptions on constant incidence and recency test characteristics fail to hold, the adjusted estimator is more robust than the snapshot estimator. We conclude with recommendations for the use of these estimators in practice and a discussion of future methodological developments to improve HIV incidence estimation via recency test.
引用
收藏
页码:1446 / 1461
页数:16
相关论文
共 50 条
  • [11] Methodological and Statistical Considerations for Cross-Sectional, Case-Control, and Cohort Studies
    Perez-Guerrero, Edsaul Emilio
    Guillen-Medina, Miryam Rosario
    Marquez-Sandoval, Fabiola
    Vera-Cruz, Jose Maria
    Gallegos-Arreola, Martha Patricia
    Rico-Mendez, Manuel Alejandro
    Aguilar-Velazquez, Jose Alonso
    Gutierrez-Hurtado, Itzae Adonai
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (14)
  • [12] Evaluation of multi-assay algorithms for cross-sectional HIV incidence estimation in settings with universal antiretroviral treatment
    Wendy Grant-McAuley
    Oliver Laeyendecker
    Daniel Monaco
    Athena Chen
    Sarah E. Hudelson
    Ethan Klock
    Ron Brookmeyer
    Douglas Morrison
    Estelle Piwowar-Manning
    Charles S. Morrison
    Richard Hayes
    Helen Ayles
    Peter Bock
    Barry Kosloff
    Kwame Shanaube
    Nomtha Mandla
    Anneen van Deventer
    Ingo Ruczinski
    Kai Kammers
    H. Benjamin Larman
    Susan H. Eshleman
    BMC Infectious Diseases, 22
  • [13] Performance of a Limiting-Antigen Avidity Enzyme Immunoassay for Cross-Sectional Estimation of HIV Incidence in the United States
    Konikoff, Jacob
    Brookmeyer, Ron
    Longosz, Andrew F.
    Cousins, Matthew M.
    Celum, Connie
    Buchbinder, Susan P.
    Seage, George R., III
    Kirk, Gregory D.
    Moore, Richard D.
    Mehta, Shruti H.
    Margolick, Joseph B.
    Brown, Joelle
    Mayer, Kenneth H.
    Koblin, Beryl A.
    Justman, Jessica E.
    Hodder, Sally L.
    Quinn, Thomas C.
    Eshleman, Susan H.
    Laeyendecker, Oliver
    PLOS ONE, 2013, 8 (12):
  • [14] Evaluation of multi-assay algorithms for cross-sectional HIV incidence estimation in settings with universal antiretroviral treatment
    Grant-McAuley, Wendy
    Laeyendecker, Oliver
    Monaco, Daniel
    Chen, Athena
    Hudelson, Sarah E.
    Klock, Ethan
    Brookmeyer, Ron
    Morrison, Douglas
    Piwowar-Manning, Estelle
    Morrison, Charles S.
    Hayes, Richard
    Ayles, Helen
    Bock, Peter
    Kosloff, Barry
    Shanaube, Kwame
    Mandla, Nomtha
    van Deventer, Anneen
    Ruczinski, Ingo
    Kammers, Kai
    Larman, H. Benjamin
    Eshleman, Susan H.
    BMC INFECTIOUS DISEASES, 2022, 22 (01)
  • [15] Validation of population-level HIV-1 incidence estimation by cross-sectional incidence assays in the HPTN 071 (PopART) trial
    Klock, Ethan
    Wilson, Ethan
    Fernandez, Reinaldo E.
    Piwowar-Manning, Estelle
    Moore, Ayana
    Kosloff, Barry
    Bwalya, Justin
    Bell-Mandla, Nomtha
    James, Anelet
    Ayles, Helen
    Bock, Peter
    Donnell, Deborah
    Fidler, Sarah
    Hayes, Richard
    Eshleman, Susan H.
    Laeyendecker, Oliver
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2021, 24 (12)
  • [16] Pap test recency and HPV vaccination among Brazilian immigrant women in the United States: a cross-sectional study
    Greaney, Mary L.
    Cohen, Steven A.
    Allen, Jennifer D.
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [17] A new method for estimating HIV incidence from a single cross-sectional survey
    Fellows, Ian E.
    Shiraishi, Ray W.
    Cherutich, Peter
    Achia, Thomas
    Young, Peter W.
    Kim, Andrea A.
    PLOS ONE, 2020, 15 (08):
  • [18] Sample Size Methods for Estimating HIV Incidence from Cross-Sectional Surveys
    Konikoff, Jacob
    Brookmeyer, Ron
    BIOMETRICS, 2015, 71 (04) : 1121 - 1129
  • [19] Identification and validation of a multi-assay algorithm for cross-sectional HIV incidence estimation in populations with subtype C infection
    Laeyendecker, Oliver
    Konikoff, Jacob
    Morrison, Douglas E.
    Brookmeyer, Ronald
    Wang, Jing
    Celum, Connie
    Morrison, Charles S.
    Karim, Quarraisha Abdool
    Pettifor, Audrey E.
    Eshleman, Susan H.
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2018, 21
  • [20] Calculating incidence in cross-sectional studies
    Raina, S. K.
    JOURNAL OF POSTGRADUATE MEDICINE, 2016, 62 (01) : 51 - +