Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives

被引:70
|
作者
Bauer, C. [1 ]
Sharma, A. K. [2 ]
Willer, U. [1 ,2 ]
Burgmeier, J. [1 ]
Braunschweig, B. [2 ]
Schade, W. [1 ,2 ]
Blaser, S. [3 ]
Hvozdara, L. [3 ]
Mueller, A. [3 ]
Holl, G. [4 ]
机构
[1] Tech Univ Clausthal, LaserAnwendungsCtr, D-38678 Clausthal Zellerfeld, Germany
[2] Tech Univ Clausthal, Inst Phys & Phys Technol, D-38678 Clausthal Zellerfeld, Germany
[3] Alpes Lasers SA, CH-2000 Neuchatel, Switzerland
[4] Wehrwissensch Inst Werk Explos & Betriebsstoffe, D-53913 Grosses Cent, Heimerzheim Swi, Germany
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2008年 / 92卷 / 03期
关键词
D O I
10.1007/s00340-008-3134-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical methods are well-established for trace gas detection in many applications, such as industrial process control or environmental sensing. Consequently, they gain much interest in the discussion of sensing methods for counterterrorism, e.g., the detection of explosives. Explosives as well as their decomposition products possess strong absorption features in the mid-infrared (MIR) spectral region between lambda = 5 and 11 mu m. In this report we present two different laser spectroscopic approaches based on quantum cascade lasers (QCLs) operating at wavelengths around lambda = 5 and 8 mu m, respectively. Stand-off configuration for the remote detection of nitro-based explosives (e.g., trinitrotoluene, TNT) and a fiber coupled sensor device for the detection of triacetone triperoxide (TATP) are discussed.
引用
收藏
页码:327 / 333
页数:7
相关论文
共 50 条
  • [21] Mid-infrared upconversion spectroscopy
    Tidemand-Lichtenberg, P.
    Dam, J. S.
    Andersen, H. V.
    Hogstedt, L.
    Pedersen, C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (11) : D28 - D35
  • [22] Remote mid-infrared photoacoustic spectroscopy with a quantum cascade laser
    Berer, Thomas
    Brandstetter, Markus
    Hochreiner, Armin
    Langer, Gregor
    Maerzinger, Wolfgang
    Burgholzer, Peter
    Lendl, Bernhard
    OPTICS LETTERS, 2015, 40 (15) : 3476 - 3479
  • [23] Mid-infrared spectroscopy of erbium doped chloride laser crystals
    Kirkpatrick, Sean M.
    Shaw, L. B.
    Bowman, S. R.
    Searles, S.
    Feldman, B. J.
    Ganem, Joseph
    OPTICS EXPRESS, 1997, 1 (04): : 78 - 86
  • [24] Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources
    Zorin, Ivan
    Gattinger, Paul
    Ebner, Alexander
    Brandstetter, Markus
    OPTICS EXPRESS, 2022, 30 (04): : 5222 - 5254
  • [25] Airborne Atmospheric Research Using Mid-Infrared Laser Spectroscopy
    Fried, Alan
    Weibring, Petter
    Richter, Dirk
    Walega, James
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VI, 2009, 7222
  • [26] Mid-infrared laser spectroscopy for online analysis of exhaled CO
    Sowa, Marcus
    Muertz, Manfred
    Hering, Peter
    JOURNAL OF BREATH RESEARCH, 2010, 4 (04)
  • [27] Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia
    Mejri, S.
    Sow, P. L. T.
    Kozlova, O.
    Ayari, C.
    Tokunaga, S. K.
    Chardonnet, C.
    Briaudeau, S.
    Darquie, B.
    Rohart, F.
    Daussy, C.
    METROLOGIA, 2015, 52 (05) : S314 - S323
  • [28] Mid-infrared ring laser
    Krier, A
    Sherstnev, VV
    Wright, D
    Monakhov, AM
    Hill, G
    ELECTRONICS LETTERS, 2003, 39 (12) : 916 - 917
  • [29] Mid-infrared spectroscopy for detection of Huanglongbing (greening) in citrus leaves
    Sankaran, Sindhuja
    Ehsani, Reza
    Etxeberria, Edgardo
    TALANTA, 2010, 83 (02) : 574 - 581
  • [30] Detection of adulteration in cooked meat products by mid-infrared spectroscopy
    Al-Jowder, O
    Kemsley, EK
    Wilson, RH
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2002, 50 (06) : 1325 - 1329