Pore scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann method

被引:90
|
作者
Ghassemi, Ali [1 ]
Pak, Ali [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
关键词
Lattice Boltzmann method; permeability; tortuosity; discrete element method; KOZENY-CARMAN EQUATION; HYDRAULIC CONDUCTIVITY; BOUNDARY-CONDITIONS; DIFFUSIVE TORTUOSITY; FLUID-FLOWS; MODEL; SIMULATIONS; PREDICT; SOILS; GOODBYE;
D O I
10.1002/nag.932
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In this paper, Lattice Boltzmann method (LBM) has been used to study the effects of permeability and tortuosity on flow through saturated particulate media and identify the relationships between permeability and tortuosity with other parameters such as particles diameter, grain specific surface, and porosity. LBM is a simple kinematic model that can incorporate the essential physics of microscopic and mesoscopic processes involved in flow through granular soils. The obtained results indicate that the 2D LB model, due to its inherent theoretical advantages, is capable of demonstrating that the porosity and specific surface are the most influential parameters in determining the intrinsic permeability of granular media. The obtained results show that particles' size diameter has a two-fold effect on the coefficient of permeability: one is through specific surface and the other is by tortuosity factor. Numerical study also reveals that tortuosity of granular soils decreases almost linearly with increasing the porosity. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:886 / 901
页数:16
相关论文
共 50 条
  • [21] Pore-scale numerical prediction of three-phase relative permeability in porous media using the lattice Boltzmann method
    Zhu, Xiaofei
    Wang, Sen
    Feng, Qihong
    Zhang, Lei
    Chen, Li
    Tao, Wenquan
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 126
  • [22] Numerical Study of Flow and Heat Transfer in a Rectangular Channel Partially Filled with Porous Media at the Pore Scale Using Lattice Boltzmann Method
    Lai, Tianwang
    Liu, Xiangyang
    Chu, Jianchun
    He, Maogang
    Zhang, Ying
    HEAT TRANSFER ENGINEERING, 2022, 43 (8-10) : 818 - 829
  • [23] Numerical Study of Flow and Heat Transfer in a Rectangular Channel Partially Filled with Porous Media at the Pore Scale Using Lattice Boltzmann Method
    Lai, Tianwang
    Liu, Xiangyang
    Chu, Jianchun
    He, Maogang
    Zhang, Ying
    Heat Transfer Engineering, 2022, 43 (8-10): : 818 - 829
  • [24] Pore-scale study on miscible thermal displacing process in porous media using lattice Boltzmann method
    Ju, Long
    Shan, Baochao
    Wang, Shusen
    PHYSICS OF FLUIDS, 2023, 35 (02)
  • [25] Calculation of the permeability in porous media using the lattice Boltzmann method
    Eshghinejadfard, Amir
    Daroczy, Laszlo
    Janiga, Gabor
    Thevenin, Dominique
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2016, 62 : 93 - 103
  • [26] Porosity-Permeability Relationships in Mudstone from Pore-Scale Fluid Flow Simulations using the Lattice Boltzmann Method
    Vora, Harsh Biren
    Dugan, Brandon
    WATER RESOURCES RESEARCH, 2019, 55 (08) : 7060 - 7071
  • [27] Pore-scale study of the effects of surface roughness on relative permeability of rock fractures using lattice Boltzmann method
    Yi, Jie
    Xing, Huilin
    Wang, Junjian
    Xia, Zhaohui
    Jing, Yu
    CHEMICAL ENGINEERING SCIENCE, 2019, 209
  • [28] Numerical Investigation of Flow Through Porous Media Using Lattice Boltzmann Method
    Noorazizi, M. S.
    Azwadi, C. S. Nor
    4TH INTERNATIONAL MEETING OF ADVANCES IN THERMOFLUIDS (IMAT 2011), PT 1 AND 2, 2012, 1440 : 863 - 869
  • [29] Pore-Scale Modeling of Spontaneous Imbibition in Porous Media Using the Lattice Boltzmann Method
    Liu, Haihu
    Sun, Shilin
    Wu, Rui
    Wei, Bei
    Hou, Jian
    WATER RESOURCES RESEARCH, 2021, 57 (06)
  • [30] Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method
    Xia, Ming
    COMPUTERS & GEOSCIENCES, 2016, 88 : 30 - 40