Global Stabilization of Fractional-Order Memristor-Based Neural Networks With Time Delay

被引:169
|
作者
Jia, Jia [1 ]
Huang, Xia [1 ]
Li, Yuxia [1 ]
Cao, Jinde [2 ]
Alsaedi, Ahmed [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Memristors; State feedback; Stability analysis; Biological neural networks; Synchronization; Capacitors; Linear matrix inequalities; Delay; fractional-order nonlinear systems; linear matrix inequalities (LMIs); memristor-based neural networks (MNNs); Mittag-Leffler stability; stabilization; SYNCHRONIZATION; STABILITY; DYNAMICS; CHAOS;
D O I
10.1109/TNNLS.2019.2915353
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the global stabilization of fractional-order memristor-based neural networks (FMNNs) with time delay. The voltage threshold type memristor model is considered, and the FMNNs are represented by fractional-order differential equations with discontinuous right-hand sides. Then, the problem is addressed based on fractional-order differential inclusions and set-valued maps, together with the aid of Lyapunov functions and the comparison principle. Two types of control laws (delayed state feedback control and coupling state feedback control) are designed. Accordingly, two types of stabilization criteria [algebraic form and linear matrix inequality (LMI) form] are established. There are two groups of adjustable parameters included in the delayed state feedback control, which can be selected flexibly to achieve the desired global asymptotic stabilization or global Mittag-Leffler stabilization. Since the existing LMI-based stability analysis techniques for fractional-order systems are not applicable to delayed fractional-order nonlinear systems, a fractional-order differential inequality is established to overcome this difficulty. Based on the coupling state feedback control, some LMI stabilization criteria are developed for the first time with the help of the newly established fractional-order differential inequality. The obtained LMI results provide new insights into the research of delayed fractional-order nonlinear systems. Finally, three numerical examples are presented to illustrate the effectiveness of the proposed theoretical results.
引用
收藏
页码:997 / 1009
页数:13
相关论文
共 50 条
  • [31] Fixed-Time Synchronization of Delayed Fractional-Order Memristor-Based Fuzzy Cellular Neural Networks
    Sun, Yeguo
    Liu, Yihong
    IEEE ACCESS, 2020, 8 : 165951 - 165962
  • [32] Adaptive Synchronization of Fractional-Order Memristor-Based Neural Networks with Multiple Time-Varying Delays
    Jia, Jia
    Huang, Xia
    Li, Yuxia
    Wang, Zhen
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1229 - 1234
  • [33] Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks
    Zheng, Mingwen
    Li, Lixiang
    Peng, Haipeng
    Xiao, Jinghua
    Yang, Yixian
    Zhang, Yanping
    Zhao, Hui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 272 - 291
  • [34] New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay
    Du, Feifei
    Lu, Jun-Guo
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 389
  • [35] Global asymptotic synchronization of impulsive fractional-order complex-valued memristor-based neural networks with time varying delays
    Ali, M. Syed
    Hymavathi, M.
    Senan, Sibel
    Shekher, Vineet
    Arik, Sabri
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
  • [36] Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances
    Liu, Shuxin
    Yu, Yongguang
    Zhang, Shuo
    Zhang, Yuting
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 845 - 854
  • [37] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Shuxin Liu
    Yongguang Yu
    Shuo Zhang
    Neural Computing and Applications, 2019, 31 : 3533 - 3542
  • [38] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Liu, Shuxin
    Yu, Yongguang
    Zhang, Shuo
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (08): : 3533 - 3542
  • [39] Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches
    Huang, Xia
    Fan, Yingjie
    Jia, Jia
    Wang, Zhen
    Li, Yuxia
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (14): : 2317 - 2327
  • [40] Uniformly stable and attractive of fractional-order memristor-based neural networks with multiple delays
    Yao, Xueqi
    Zhong, Shouming
    Hu, Taotao
    Cheng, Hong
    Zhang, Dian
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 392 - 403