Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models

被引:80
|
作者
Roosa, Kimberlyn [1 ]
Chowell, Gerardo [1 ,2 ]
机构
[1] Georgia State Univ, Dept Populat Hlth Sci, Sch Publ Hlth, Atlanta, GA 30303 USA
[2] NIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USA
基金
英国生物技术与生命科学研究理事会;
关键词
Compartmental models; Parameter identifiability; Uncertainty quantification; Epidemic models; Structural parameter identifiability; Practical parameter identifiability; EPIDEMIC; INFERENCE; INFLUENZA; NUMBER;
D O I
10.1186/s12976-018-0097-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundMathematical modeling is now frequently used in outbreak investigations to understand underlying mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of epidemics. However, the successful application of mathematical models to guide public health interventions lies in the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a simple computational method for assessing parameter identifiability in compartmental epidemic models.MethodsWe describe a parametric bootstrap approach to generate simulated data from dynamical systems to quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin with a low-complexity SEIR model and work through examples of increasingly more complex compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika.ResultsOverall, parameter identifiability issues are more likely to arise with more complex models (based on number of equations/states and parameters). As the number of parameters being jointly estimated increases, the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in most cases, R-0 is often robust to parameter identifiability issues affecting individual parameters in the model. Despite large confidence intervals and higher mean squared error of other individual model parameters, R-0 can still be estimated with precision and accuracy.ConclusionsBecause public health policies can be influenced by results of mathematical modeling studies, it is important to conduct parameter identifiability analyses prior to fitting the models to available data and to report parameter estimates with quantified uncertainty. The method described is helpful in these regards and enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Parameter identifiability and estimation of HIV/AIDS dynamic models
    Wu, Hulin
    Zhu, Haihong
    Miao, Hongyu
    Perelson, Alan S.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (03) : 785 - 799
  • [12] SIMILARITY TRANSFORMATION APPROACH TO IDENTIFIABILITY ANALYSIS OF NONLINEAR COMPARTMENTAL-MODELS
    VAJDA, S
    GODFREY, KR
    RABITZ, H
    MATHEMATICAL BIOSCIENCES, 1989, 93 (02) : 217 - 248
  • [13] Dynamic Models of Infectious Disease Transmission in Prisons and the General Population
    Ndeffo-Mbah, Martial L.
    Vigliotti, Vivian S.
    Skrip, Laura A.
    Dolan, Kate
    Galvani, Alison P.
    EPIDEMIOLOGIC REVIEWS, 2018, 40 (01) : 40 - 57
  • [14] Community Transmission of Respiratory Infectious Diseases using Agent-based and Compartmental Models
    Buhat, Christian Alvin H.
    Lutero, Destiny S.
    Olave, Yancee H.
    Torres, Monica C.
    Rabajante, Jomar F.
    MINDANAO JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 19 (02): : 164 - 183
  • [15] Dynamics of Salmonella Transmission Using Compartmental Models
    Ilea, Mihai
    Gheorghita, Andrei
    Turnea, Marius
    NEW TECHNOLOGIES AND REDESIGNING LEARNING SPACES, VOL III, 2019, : 299 - 306
  • [16] Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models
    Korobilis, Dimitris
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2013, 75 (02) : 157 - 179
  • [17] Analyzing the identifiability of linear dynamic models with parameter space separators
    Avdeenko T.V.
    Kargin S.A.
    Journal of Applied and Industrial Mathematics, 2008, 2 (04) : 464 - 476
  • [18] Mathematical models of infectious disease transmission
    Grassly, Nicholas C.
    Fraser, Christophe
    NATURE REVIEWS MICROBIOLOGY, 2008, 6 (06) : 477 - 487
  • [19] Mathematical models of infectious disease transmission
    Nicholas C. Grassly
    Christophe Fraser
    Nature Reviews Microbiology, 2008, 6 : 477 - 487
  • [20] Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach
    Hines, Keegan E.
    Middendorf, Thomas R.
    Aldrich, Richard W.
    JOURNAL OF GENERAL PHYSIOLOGY, 2014, 143 (03): : 401 - 416