State of Charge Estimation for Lithium-ion Battery Based on Random Forests Technique with Gravitational Search Algorithm

被引:0
|
作者
Lipu, M. S. Hossain [1 ]
Ayob, A. [1 ]
Saad, M. H. M. [1 ]
Hussain, Aini [1 ]
Hannan, M. A. [2 ]
Faisal, M. [2 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi 43600, Selangor, Malaysia
[2] Univ Tenaga Nas, Dept Elect Power Engn, Kajang 43000, Selangor, Malaysia
关键词
State of charge; Lithium-ion battery; Random forests; Gravitational search algorithm; Electric vehicle; MODEL;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An accurate state of charge (SOC) estimation for lithium-ion battery has been an intensively researched subject in electric vehicle (EV) application towards the advancement of the sustainable transportation system. However, SOC estimation with high accuracy is challenging because of the complex internal characteristics of the lithium-ion battery which is changed by different environmental situations. This paper develops an accurate method for the state of charge (SOC) estimation of a lithium-ion battery using random forests (RFs) algorithm. However, the accuracy of RFs highly depends on the appropriate selection of trees and leaves per tree in a forest. Thus, this research develops an enhanced model with RFs based gravitational search algorithm (GSA). The aim of GSA is to find the best value of trees and leaves per tree. The robustness and accuracy of the proposed model are tested under different temperatures. The model training and validation are executed using federal urban driving schedule (FUDS). The effectiveness of the proposed method is compared with the conventional RFs and radial basis function neural network (RBFNN) and optimal RBFNN-GSA models using different statistical error terms and computational cost. The proposed RFs based GSA model offers higher robustness and accuracy in reducing RMSE by 55.4%, 67.4%, and MAE by 39.1% and 78.1% than conventional RFs and RBFNN based GSA model, respectively at 25 degrees C.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Lithium-ion battery state of charge estimation using a fractional battery model
    Francisco, J. M.
    Sabatier, J.
    Lavigne, L.
    Guillemard, F.
    Moze, M.
    Tari, M.
    Merveillaut, M.
    Noury, A.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [42] Gravitational search algorithm with Gaussian process for lithium-ion batteries state of health (SOH) estimation
    Ye, Jing
    Zhang, Santong
    Yang, Wei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT INNOVATION, 2015, 28 : 1203 - 1210
  • [43] Battery cell modeling and online estimation of the state of charge of a lithium-ion battery
    Tsai, I-Haur
    Yu, Kuan-Hsun
    Tseng, Alexander
    Yen, Jia-Yush
    Fu, Tseng-Ti
    Huang, Evan
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (05) : 412 - 418
  • [44] The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection
    Song, Ziyou
    Hou, Jun
    Li, Xuefeng
    Wu, Xiaogang
    Hu, Xiaosong
    Hofmann, Heath
    Sun, Jing
    ENERGY, 2020, 193 : 66 - 77
  • [45] A fast estimation algorithm for lithium-ion battery state of health
    Tang, Xiaopeng
    Zou, Changfu
    Yao, Ke
    Chen, Guohua
    Liu, Boyang
    He, Zhenwei
    Gao, Furong
    JOURNAL OF POWER SOURCES, 2018, 396 : 453 - 458
  • [46] Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique
    Jiang, Bo
    Tao, Siyi
    Wang, Xueyuan
    Zhu, Jiangong
    Wei, Xuezhe
    Dai, Haifeng
    ENERGY, 2023, 278
  • [47] Estimation of Lithium-Ion Battery State of Charge for Electric Vehicles Using an Adaptive Joint Algorithm
    Sakile, Rajakumar
    Sinha, Umesh Kumar
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (03)
  • [48] A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation
    Wang, Dongqing
    Yang, Yan
    Gu, Tianyu
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [49] State of Charge and State of Health estimation in large lithium-ion battery packs
    Bhaskar, Kiran
    Kumar, Ajith
    Bunce, James
    Pressman, Jacob
    Burkell, Neil
    Miller, Nathan
    Rahn, Christopher D.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3075 - 3080
  • [50] Temperature characterization based state-of-charge estimation for pouch lithium-ion battery
    Li, Xining
    Xiao, Lizhong
    Geng, Guangchao
    Jiang, Quanyuan
    JOURNAL OF POWER SOURCES, 2022, 535