Error estimates of finite difference methods for the Dirac equation in the massless and nonrelativistic regime

被引:4
|
作者
Ma, Ying [1 ]
Yin, Jia [2 ,3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Dirac equation; Massless and nonrelativistic regime; Finite difference method; Oscillatory in time; Rapid motion in space; PSEUDOSPECTRAL METHOD; SCHEME; SIMULATION; SYSTEM;
D O I
10.1007/s11075-021-01159-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present four frequently used finite difference methods and establish the error bounds for the discretization of the Dirac equation in the massless and nonrelativistic regime, involving a small dimensionless parameter 0 < epsilon MUCH LESS-THAN 1 inversely proportional to the speed of light. In the massless and nonrelativistic regime, the solution exhibits rapid motion in space and is highly oscillatory in time. Specifically, the wavelength of the propagating waves in time is at O(epsilon), while in space, it is at O(1) with the wave speed at O(epsilon(- 1)). We adopt one leap-frog, two semi-implicit, and one conservative Crank-Nicolson finite difference methods to numerically discretize the Dirac equation in one dimension and establish rigorously the error estimates which depend explicitly on the time step tau, mesh size h, and the small parameter epsilon. The error bounds indicate that, to obtain the "correct" numerical solution in the massless and nonrelativistic regime, i.e., 0 < epsilon MUCH LESS-THAN 1, all these finite difference methods share the same epsilon-scalability as time step tau = O(epsilon(3/2)) and mesh size h = O(epsilon(1/2)). A large number of numerical results are reported to verify the error estimates.
引用
收藏
页码:1415 / 1440
页数:26
相关论文
共 50 条
  • [31] Error estimates of finite difference schemes for the Korteweg-de Vries equation
    Courtes, Clementine
    Lagoutiere, Frederic
    Rousset, Frederic
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 628 - 685
  • [32] Error estimates for Galerkin finite element methods for the Camassa–Holm equation
    D. C. Antonopoulos
    V. A. Dougalis
    D. E. Mitsotakis
    Numerische Mathematik, 2019, 142 : 833 - 862
  • [33] UNIFORMLY ACCURATE NUMERICAL SCHEMES FOR THE NONLINEAR DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Lemou, Mohammed
    Mehats, Florian
    Zhao, Xiaofei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (04) : 1107 - 1128
  • [34] The massless Dirac equation in three dimensions: Dispersive estimates and zero energy obstructions
    Green, William R.
    Lane, Connor
    Lyons, Benjamin
    Ravishankar, Shyam
    Shaw, Aden
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 449 - 490
  • [35] Error Estimates of Four Level Conservative Finite Difference Schemes for Multidimensional Boussinesq Equation
    Kolkovska, Natalia
    FINITE DIFFERENCE METHODS, THEORY AND APPLICATIONS, 2015, 9045 : 266 - 273
  • [36] UNIFORM ERROR ESTIMATES OF THE CONSERVATIVE FINITE DIFFERENCE METHOD FOR THE ZAKHAROV SYSTEM IN THE SUBSONIC LIMIT REGIME
    Cai, Yongyong
    Yuan, Yongjun
    MATHEMATICS OF COMPUTATION, 2018, 87 (311) : 1191 - 1225
  • [37] Optimal Resolution Methods for the Klein–Gordon–Dirac System in the Nonrelativistic Limit Regime
    Wenfan Yi
    Xinran Ruan
    Chunmei Su
    Journal of Scientific Computing, 2019, 79 : 1907 - 1935
  • [38] Error estimates for Galerkin finite element methods for the Camassa-Holm equation
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 833 - 862
  • [39] UNIFORMLY ACCURATE NESTED PICARD ITERATIVE INTEGRATORS FOR THE DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Cai, Yongyong
    Wang, Yan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1602 - 1624
  • [40] UNIFORMLY ACCURATE NESTED PICARD ITERATIVE INTEGRATORS FOR THE NONLINEAR DIRAC EQUATION IN THE NONRELATIVISTIC REGIME
    Cai, Yongyong
    Wang, Yan
    MULTISCALE MODELING & SIMULATION, 2022, 20 (01): : 164 - 187