A Karhunen-Loeve expansion for a mean-centered Brownian bridge

被引:19
|
作者
Deheuvels, Paul [1 ]
机构
[1] Univ Paris 06, LSTA, F-92340 Bourg La Reine, France
关键词
Gaussian processes; Karhunen-Loeve expansions; Wiener process; Brownian bridge; Cramer-von Mises tests of fit; tests of goodness of fit;
D O I
10.1016/j.spl.2007.03.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The processes of the form y(K)(t) = B(t) - 6Kt(1 - t) integral(1)(0) B(u)du, where K is a constant, and B(center dot) a Brownian bridge, are investigated. We show that y(0)(center dot) and y(2)(center dot) are both Brownian bridges, and establish the independence of and integral(1)(0) B(u)du, this implying that the law of y(1)(center dot) coincides with the conditional law of B, given that integral B-1(0)(u) du = 0. We provide the Karhunen-Loeve expansion on [0, 1] of y(1)(center dot), making use of the Bessel functions J(1/2) and J(3/2). Applications and variants of these results are discussed. In particular, we establish a comparison theorem concerning the supremum distributions of y(K')(center dot) and y(K'')(center dot)) on [0, 1]. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1190 / 1200
页数:11
相关论文
共 50 条
  • [21] On the optimality of the discrete Karhunen-Loeve expansion
    Universitat Innsbruck, Innsbruck, Austria
    SIAM J Control Optim, 6 (1937-1939):
  • [22] Model reduction, centering, and the Karhunen-Loeve expansion
    Glavaski, S
    Marsden, JE
    Murray, RM
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2071 - 2076
  • [23] AUTOMATIC PHASE ALIGNMENT FOR THE KARHUNEN-LOEVE EXPANSION
    CHRISTENSEN, RA
    HIRSCHMAN, AD
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1979, 26 (02) : 94 - 99
  • [24] KARHUNEN-LOEVE EXPANSION OF BURGERS MODEL OF TURBULENCE
    CHAMBERS, DH
    ADRIAN, RJ
    MOIN, P
    STEWART, DS
    SUNG, HJ
    PHYSICS OF FLUIDS, 1988, 31 (09) : 2573 - 2582
  • [25] Data Sparse Computation of the Karhunen-Loeve Expansion
    Khoromskij, B. N.
    Litvinenko, A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 311 - +
  • [26] ON NOISE REDUCTION IN THE KARHUNEN-LOEVE EXPANSION DOMAIN
    Benesty, Jacob
    Chen, Jingdong
    Huang, Yiteng
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 25 - +
  • [27] Karhunen-Loeve expansion for random earthquake excitations
    Jun, He
    EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2015, 14 (01) : 77 - 84
  • [28] Karhunen-Loeve Expansion for Massive Spatial Data
    Hu, Juan
    Zhang, Hao
    2012 INTERNATIONAL CONFERENCE ON FUTURE COMMUNICATION AND COMPUTER TECHNOLOGY (ICFCCT 2012), 2012, : 153 - 161
  • [29] Karhunen-Loeve expansion for additive Slepian processes
    Liu, Jin V.
    Huang, Zongfu
    Mao, Hongjun
    STATISTICS & PROBABILITY LETTERS, 2014, 90 : 93 - 99
  • [30] Karhunen-Loeve expansion of a set of rotated templates
    Jogan, M
    Zagar, E
    Leonardis, A
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (07) : 817 - 825