A Karhunen-Loeve expansion for a mean-centered Brownian bridge

被引:19
|
作者
Deheuvels, Paul [1 ]
机构
[1] Univ Paris 06, LSTA, F-92340 Bourg La Reine, France
关键词
Gaussian processes; Karhunen-Loeve expansions; Wiener process; Brownian bridge; Cramer-von Mises tests of fit; tests of goodness of fit;
D O I
10.1016/j.spl.2007.03.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The processes of the form y(K)(t) = B(t) - 6Kt(1 - t) integral(1)(0) B(u)du, where K is a constant, and B(center dot) a Brownian bridge, are investigated. We show that y(0)(center dot) and y(2)(center dot) are both Brownian bridges, and establish the independence of and integral(1)(0) B(u)du, this implying that the law of y(1)(center dot) coincides with the conditional law of B, given that integral B-1(0)(u) du = 0. We provide the Karhunen-Loeve expansion on [0, 1] of y(1)(center dot), making use of the Bessel functions J(1/2) and J(3/2). Applications and variants of these results are discussed. In particular, we establish a comparison theorem concerning the supremum distributions of y(K')(center dot) and y(K'')(center dot)) on [0, 1]. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1190 / 1200
页数:11
相关论文
共 50 条