Discovering communities for microgrids with spatial-temporal net energy

被引:5
|
作者
Xie, Shangyu [1 ]
Wang, Han [1 ]
Wang, Shengbin [2 ]
Lu, Haibing [3 ]
Hong, Yuan [1 ]
Jin, Dong [1 ]
Liu, Qi [4 ]
机构
[1] IIT, Dept Comp Sci, 10 W 31st St, Chicago, IL 60616 USA
[2] Coll New Jersey, Sch Business, 2000 Pennington Rd, Ewing, NJ 08628 USA
[3] Santa Clara Univ, Dept Informat Syst & Analyt, 500 El Camino Real, Santa Clara, CA 95053 USA
[4] Univ Rhode Isl, Coll Business, 7 Lippitt Rd, Kingston, RI 02881 USA
基金
美国国家科学基金会;
关键词
Smart grid; Microgrid; Community discovery; Net energy (NE); Clustering; SMART; MANAGEMENT; EFFICIENT;
D O I
10.1007/s40565-019-0543-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Smart grid has integrated an increasing number of distributed energy resources to improve the efficiency and flexibility of power generation and consumption as well as the resilience of the power grid. The energy consumers on the power grid, e.g., households, equipped with distributed energy resources can be considered as "microgrids" that both generate and consume electricity. In this paper, we study the energy community discovery problems which identify energy communities for the microgrids to facilitate energy management, e.g., load balancing, energy sharing and trading on the grid. Specifically, we present efficient algorithms to discover such communities of microgrids considering both their geo-locations and net energy (NE) over any period. Finally, we experimentally validate the performance of the algorithms using both synthetic and real datasets.
引用
收藏
页码:1536 / 1546
页数:11
相关论文
共 50 条
  • [31] Determinism and stochasticity in the spatial-temporal continuum of ecological communities: the case of tropical mountains
    Khattar, Gabriel
    Macedo, Margarete
    Monteiro, Ricardo
    Peres-Neto, Pedro
    ECOGRAPHY, 2021, 44 (09) : 1391 - 1402
  • [32] Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient
    Antonio, Emily S.
    Kasai, Akihide
    Ueno, Masahiro
    Ishihi, Yuka
    Yokoyama, Hisashi
    Yamashita, Yoh
    ESTUARINE COASTAL AND SHELF SCIENCE, 2012, 112 : 86 - 97
  • [33] Predicting and Discovering Weather Patterns in South Africa Using Spatial-Temporal Graph Neural Networks
    Gaibie, Adeeb
    Amir, Hamza
    Nandutu, Irene
    Moodley, Deshendran
    ARTIFICIAL INTELLIGENCE RESEARCH, SACAIR 2024, 2025, 2326 : 144 - 160
  • [34] Spatial-temporal differentiation theorems
    I. Assani
    A. Young
    Acta Mathematica Hungarica, 2022, 168 : 301 - 344
  • [35] Spatial-temporal clustering of tornadoes
    Malamud, Bruce D.
    Turcotte, Donald L.
    Brooks, Harold E.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2016, 16 (12) : 2823 - 2834
  • [36] SPATIAL-TEMPORAL DIFFERENTIATION THEOREMS
    Assani, I
    Young, A.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (02) : 301 - 344
  • [37] HOLOGRAPHY OF SPATIAL-TEMPORAL EVENTS
    SAARI, PM
    KAARLI, RK
    REBANE, AK
    KVANTOVAYA ELEKTRONIKA, 1985, 12 (04): : 672 - 682
  • [38] Spatial-Temporal Event Correlation
    Buford, John F.
    Wu, Xiaotao
    Krishnaswamy, Venkatesh
    2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-8, 2009, : 2617 - 2622
  • [39] STA-Net: spatial-temporal attention network for video salient object detection
    Hong-Bo Bi
    Di Lu
    Hui-Hui Zhu
    Li-Na Yang
    Hua-Ping Guan
    Applied Intelligence, 2021, 51 : 3450 - 3459
  • [40] STA-Net: spatial-temporal attention network for video salient object detection
    Bi, Hong-Bo
    Lu, Di
    Zhu, Hui-Hui
    Yang, Li-Na
    Guan, Hua-Ping
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3450 - 3459