Sleep stages classification by hierarchical artificial neural networks

被引:2
|
作者
Kerkeni, N. [1 ]
Ben Cheikh, R. [2 ]
Bedoui, M. H. [1 ]
Alexandre, F. [3 ]
Dogui, M. [2 ]
机构
[1] Fac Med Monastir, Lab Biophys, Equipe Technol & Imagerie Med TIM, Monastir 5019, Tunisia
[2] Fac Med Monastir, Lab Physiol, Equipe Neurophysiol Vagilance Attent & Performanc, Monastir 5019, Tunisia
[3] Equipe Cortex Inria Nancy Loria Nancy, F-54603 Villers Les Nancy, France
关键词
D O I
10.1016/j.irbm.2011.12.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The goal of our work is to provide an automatic analysis and decision tool for sleep stages classification based on an artificial neural networks (ANN). The first difficulty lies in choosing the physiological signals representation and in particular the electroencephalogram (EEG). Once the representation adopted, the next step is to design the optimal neural network determined by a learning and validation process of data from a set of sleep records. We studied several configurations of conventional ANN giving results varying from 62 to 71 %, then we proposed a new hierarchical configuration, which gives a rate of 74% correct classification for six stages. These results lead us to further explore this issue at the representation and design of ANNs to improve the performance of our tool. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:35 / 40
页数:6
相关论文
共 50 条
  • [31] ARTIFICIAL NEURAL NETWORKS FOR MEDICAL CLASSIFICATION DECISIONS
    KATTAN, MW
    BECK, JR
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 1995, 119 (08) : 672 - 677
  • [32] APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO CHROMOSOME CLASSIFICATION
    ERRINGTON, PA
    GRAHAM, J
    CYTOMETRY, 1993, 14 (06): : 627 - 639
  • [33] Sleep/wake classification in infants from heart rate variability using artificial neural networks
    Lewicke, AT
    Schuckers, SA
    PEDIATRIC RESEARCH, 2004, 55 (04) : 52A - 52A
  • [34] CLASSIFICATION OF ASTEROID FAMILIES WITH ARTIFICIAL NEURAL NETWORKS
    Vujicic, D.
    Pavlovic, R.
    Milosevic, D.
    Djordevic, B.
    Randjic, S.
    Stojic, D.
    SERBIAN ASTRONOMICAL JOURNAL, 2020, 201 : 39 - 48
  • [35] CLASSIFICATION OF BANANA RIPENING STAGES BY ARTIFICIAL NEURAL NETWORKS AS A FUNCTION OF PLANT PHYSICAL, PHYSICOCHEMICAL, AND BIOCHEMICAL PARAMETERS
    Neto, Alfredo Bonini
    de Souza, Angela, V
    Bonini, Carolina dos S. B.
    de Mello, Jessica M.
    Moreira, Adonis
    ENGENHARIA AGRICOLA, 2022, 42 (03):
  • [36] Combining Spiking Neural Networks with Artificial Neural Networks for Enhanced Image Classification
    Muramatsu, Naoya
    Yu, Hai-Tao
    Satoh, Tetsuji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (02) : 252 - 261
  • [37] Sliding Hierarchical Recurrent Neural Networks for Sequence Classification
    Li, Bo
    Sheng, Zhonghao
    Ye, Wei
    Zhang, Jinglei
    Liu, Kai
    Zhang, Shikun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [38] Hierarchical Transfer Convolutional Neural Networks for Image Classification
    Dong, Xishuang
    Wu, Hsiang-Huang
    Yan, Yuzhong
    Qian, Lijun
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2817 - 2825
  • [39] AUDIO CONCEPT CLASSIFICATION WITH HIERARCHICAL DEEP NEURAL NETWORKS
    Ravanelli, Mirco
    Elizalde, Benjamin
    Ni, Karl
    Friedland, Gerald
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 606 - 610
  • [40] Grafting Heterogeneous Neural Networks for a Hierarchical Object Classification
    Heller, Guillaume
    Perrin, Eric
    Vrabie, Valeriu
    Dusart, Cedric
    Le Roux, Solen
    IEEE ACCESS, 2022, 10 : 12927 - 12940