Numerical investigation on vortex-induced vibration energy harvesting of a heated circular cylinder with various cross-sections

被引:17
|
作者
Barati, Ebrahim [1 ]
Biabani, Mohsen [1 ]
Zarkak, Mehdi Rafati [1 ]
机构
[1] Khayyam Univ, Fac Eng, Dept Mech Engn, Mashhad, Razavi Khorasan, Iran
关键词
Semi-circular cylinder; Energy harvesting; Thermal buoyancy force; Vortex induced vibration; Numerical simulations; SEMICIRCULAR CYLINDER; FLUID-FLOW; REYNOLDS;
D O I
10.1016/j.icheatmasstransfer.2022.105888
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study describes a two-dimensional numerical investigation of the flow and heat transfer around inverted Dshaped cylinders. The effects of thermal buoyancy force over the bluff bodies are considered numerically based on the flow field around circular and semi-circular cylinders. The operating Richardson numbers (Ri) are 0, 0.5, 1, and 1.5 with a Reynolds number (Re) of 100. Five cylinders with a length -to -diameter ratio of L* = (L/D) = 0.5, 0.6, 0.7 0.8, 0.9 are selected to investigate the effect of L* on energy harvesting. The functional dependence of drag coefficient, lift coefficient, resultant force coefficient, dimensionless maximum vibration amplitude, and output power is analyzed and studied. To validate the present study, some of the results are compared with other numerical and experimental investigations, and reasonable agreement is obtained. The results show that in the absence of buoyancy force, the history of the contours, and streamlines are periodic, and vortices created at the back of the body detach similarly from either side of the body; however, this behavior is not seen for other values of the Richardson numbers. Moreover, when the temperature contours are examined, a higher heat transfer is observed when a higher value of the Richardson is prescribed. Finally, the analysis shows that the output power of the bluff bodies under the condition of Ri =1.5 increases by 7.02, 10.4, 15.6, 21.2, and 25.4 as the L* increases, and the maximum extracted power is 26.2 at L* = 1 in relation to not applying buoyancy.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Numerical simulation of vortex-induced vibration of a smooth circular cylinder at the subcritical regime
    Abbaspour, Madjid
    Kourabbasloo, Navid Nemati
    Mohtat, Pouya
    Tanha, Araz
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2022, 236 (04) : 916 - 937
  • [32] Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses
    Gao, Yun
    Zong, Zhi
    Zou, Li
    Takagi, Shu
    Jiang, Zongyu
    MARINE STRUCTURES, 2018, 57 : 165 - 179
  • [33] Numerical Simulation of Vortex-induced Vibration for Two Circular Cylinder in Tandem Arrangement
    Zhao, Jing
    Guo, Haiyan
    Li, Xiaomin
    ADVANCES IN STRUCTURAL ENGINEERING, PTS 1-3, 2011, 94-96 : 1701 - 1706
  • [34] Numerical simulation of vortex-induced vibration of a circular cylinder in a spanwise shear flow
    Zhao, Ming
    PHYSICS OF FLUIDS, 2015, 27 (06)
  • [35] Numerical simulation for vortex-induced vibration of circular cylinder with two degree of feedoms
    Fang, Pingzhi
    Gu, Ming
    Tongji Daxue Xuebao/Journal of Tongji University, 2008, 36 (03): : 295 - 298
  • [36] Influence of arrangement on harvesting energy for cylinder system from vortex-induced vibration
    Luo, Zhu-Mei
    Zhang, Li-Xiang
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2014, 18 (08): : 933 - 939
  • [37] Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow
    Munir, Adnan
    Zhao, Ming
    Wu, Helen
    Lu, Lin
    Ning, Dezhi
    PHYSICS OF FLUIDS, 2018, 30 (05)
  • [38] Vortex-induced vibration of a circular cylinder of finite length
    Zhao, Ming
    Cheng, Liang
    PHYSICS OF FLUIDS, 2014, 26 (01)
  • [39] The vortex-induced vibration of a circular cylinder with helical grooves
    Wang, Xiangjun
    Zhu, Yin
    Yan, Hubin
    Hu, Peng
    Han, Yan
    ENGINEERING STRUCTURES, 2025, 327
  • [40] HAM SOLUTIONS FOR VORTEX-INDUCED VIBRATION OF A CIRCULAR CYLINDER
    Lin, Zhiliang
    Tao, Longbin
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 2, 2014,