3D metamaterials

被引:725
|
作者
Kadic, Muamer [1 ,2 ,3 ]
Milton, Graeme W. [4 ]
van Hecke, Martin [5 ,6 ]
Wegener, Martin [2 ,3 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, Inst FEMTO ST, Besancon, France
[2] Karlsruhe Inst Technol KIT, Inst Nanotechnol, Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Phys, Karlsruhe, Germany
[4] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[5] AMOLF, Amsterdam, Netherlands
[6] Leiden Univ, Huygens Kamerlingh Onnes Lab, Leiden, Netherlands
基金
美国国家科学基金会;
关键词
MECHANICAL METAMATERIALS; NEGATIVE REFRACTION; STRAIN GRADIENT; NON-RECIPROCITY; WAVES; COMPOSITES; LIGHT; FIELD; BAND; MAGNETORESISTANCE;
D O I
10.1038/s42254-018-0018-y
中图分类号
O59 [应用物理学];
学科分类号
摘要
Metamaterials are rationally designed composites aiming at effective material parameters that go beyond those of the ingredient materials. For example, negative metamaterial properties, such as the refractive index, thermal expansion coefficient or Hall coefficient, can be engineered from constituents with positive parameters. Likewise, large metamaterial parameter values can arise from all-zero constituents, such as magnetic from non-magnetic, chiral from achiral and anisotropic from isotropic. The field of metamaterials emerged from linear electromagnetism two decades ago and today addresses nearly all conceivable aspects of solids, ranging from electromagnetic and optical, and mechanical and acoustic to transport properties - linear and nonlinear, reciprocal and non-reciprocal, monostable and multistable (programmable), active and passive, and static and dynamic. In this Review, we focus on the general case of 3D periodic metamaterials, with electromagnetic or optical, acoustic or mechanical, transport or stimuli-responsive properties. We outline the fundamental bounds of these composites and summarize the state of the art in theoretical design and experimental realization. Metamaterials are rationally designed composites made of tailored building blocks, leading to effective medium properties beyond their ingredients. This Review surveys 3D metamaterials with unprecedented physical properties in electromagnetism and optics, acoustics and mechanics and transport, made possible by advances in design and manufacturing.
引用
收藏
页码:198 / 210
页数:13
相关论文
共 50 条
  • [31] Innovative 3D printed metamaterials at small scales
    Donaldson, Laurie
    MATERIALS TODAY, 2019, 27 : 2 - 3
  • [32] BROADBAND TUNABLE 3D METAMATERIALS AT TERAHERTZ FREQUENCIES
    Fan, Kebin
    Strikwerda, Andrew C.
    Tao, Hu
    Averitt, Richard D.
    Zhang, Xin
    2011 IEEE 24TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2011, : 680 - 683
  • [33] 3D PHOTONIC METAMATERIALS AND INVISIBILITY CLOAKS: THE MAKING OF
    Wegener, M.
    2011 IEEE 24TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2011, : 1 - 4
  • [34] Towards 3D electromagnetic metamaterials in the THz range
    Casse, B. D. F.
    Moser, H. O.
    Bahou, M.
    Gu, P. D.
    Jian, L. K.
    Kong, J. R.
    Mahmood, S. B.
    Wen, Li
    SYNCHROTRON RADIATION INSTRUMENTATION, PTS 1 AND 2, 2007, 879 : 1462 - +
  • [35] Deformation mechanism of innovative 3D chiral metamaterials
    Wu, Wenwang
    Qi, Dexing
    Liao, Haitao
    Qian, Guian
    Geng, Luchao
    Niu, Yinghao
    Liang, Jun
    SCIENTIFIC REPORTS, 2018, 8
  • [36] 3D Printing metamaterials towards tissue engineering
    Dogan, Elvan
    Bhusal, Anant
    Cecen, Berivan
    Miri, Amir K.
    APPLIED MATERIALS TODAY, 2020, 20
  • [37] Scalable 3D printing for topological mechanical metamaterials
    Bergne, Achilles
    Baardink, Guido
    Loukaides, Evripides G.
    Souslov, Anton
    EXTREME MECHANICS LETTERS, 2022, 57
  • [38] Assessment of 3D printed mechanical metamaterials for prosthetic liners
    Devin, Kirstie M.
    Tang, Jinghua
    Hamilton, Andrew R.
    Moser, David
    Jiang, Liudi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2024, 238 (03) : 348 - 357
  • [39] Tunable 3D printed composite metamaterials with negative stiffness
    Wu, Changlang
    Peng, Chenxi
    Le, Tu C.
    Das, R.
    Tran, Phuong
    SMART MATERIALS AND STRUCTURES, 2023, 32 (12)
  • [40] 3D printed metamaterials for high-frequency applications
    Sadeqi, Aydin
    Nejad, Hojatollah Rezaei
    Sonkusale, Sameer
    TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS XII, 2019, 10917