Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks

被引:84
|
作者
Mardanshahi, A. [1 ]
Nasir, V [2 ]
Kazemirad, S. [3 ]
Shokrieh, M. M. [1 ]
机构
[1] Iran Univ Sci & Technol, Ctr Excellence Expt Solid Mech & Dynam, Sch Mech Engn, Composites Res Lab, Tehran 1684613114, Iran
[2] Univ British Columbia UBC, Ctr Adv Wood Proc, Vancouver, BC V6T 1Z4, Canada
[3] Iran Univ Sci & Technol, Sch Mech Engn, Tehran 1684613114, Iran
基金
美国国家科学基金会;
关键词
LAMB WAVE; ACOUSTIC-EMISSION; DAMAGE IDENTIFICATION; TRANSVERSE CRACKS; DELAMINATION; QUANTIFICATION; MODEL; FAILURE; PATTERN; DESIGN;
D O I
10.1016/j.compstruct.2020.112403
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The guided wave propagation and artificial intelligence (AI) approaches were used to propose an intelligent model for automatic detection and classification of the matrix cracking in composites. Glass/epoxy cross-ply laminated composites were fabricated and the matrix cracking with several densities was induced in 90° layers. A non-destructive testing procedure using the fundamental antisymmetric Lamb wave propagation was performed on the intact specimens and those with 0.05, 0.15, and 0.25 matrix cracking density. The velocity of propagated Lamb wave, wave amplitudes in four different distances from the actuator, and the ratio of these amplitudes to the first received wave amplitude, in three frequencies of 100, 200, and 330 kHz were extracted from the acquired signals. The extracted sensory features were used to train three types of supervised machine learning models for the crack density classification. The linear discriminant analysis (LDA) was performed for dimensional reduction to find a linear combination of features that can better discriminate the classes. Support vector machines (SVM), linear vector quantization (LVQ) neural network (NN), and multilayer perceptron (MLP) NN were used for the classification. It was shown that SVM accounted for the highest classification accuracy (91.7%) followed by LVQ NN (88.9%) and MLP NN (77.8%), respectively. © 2020 Elsevier Ltd
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Guided wave-based detection of delamination and matrix cracking in composite laminates
    Wandowski, T.
    Malinowski, P.
    Kudela, P.
    Ostachowicz, W.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2011, 225 (C1) : 123 - 131
  • [32] Classification and Prediction of Lower Troposphere Layers Influence on RF Propagation Using Artificial Neural Networks
    Mudroch, Martin
    Pechac, Pavel
    Grabner, Martin
    Kvicera, Vaclav
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 2009, 5506 : 893 - +
  • [33] Damage Detection in Composites By Artificial Neural Networks Trained By Using in Situ Distributed Strains
    America Califano
    Neha Chandarana
    Luigi Grassia
    Alberto D’Amore
    Constantinos Soutis
    Applied Composite Materials, 2020, 27 : 657 - 671
  • [34] Artificial neural networks for the prediction of mechanical behavior of metal matrix composites
    Inst fuer Werkstoffwissenschaft, Stuttgart, Germany
    Acta Metall Mater, 11 (4083-4091):
  • [35] ECG-Based Heartbeat Classification for Arrhythmia Detection Using Artificial Neural Networks
    Cepeda, Eduardo
    Sanchez-Pozo, Nadia N.
    Peluffo-Ordonez, Diego H.
    Gonzalez-Vergara, Juan
    Almeida-Galarraga, Diego
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT II, 2022, 13376 : 247 - 259
  • [36] Power System Fault Detection and Classification Using Wavelet Transform and Artificial Neural Networks
    Malla, Paul
    Coburn, Will
    Keegan, Kevin
    Yu, Xiao-Hua
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 : 266 - 272
  • [37] Impact Detection using Artificial Neural Networks
    Ghajari, M.
    Khodaei, Z. Sharif
    Aliabadi, M. H.
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS X, 2012, 488-489 : 767 - 770
  • [38] Epileptic detection using artificial neural networks
    Srinivasan, V
    Eswaran, C
    Sriraam, N
    2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 340 - 343
  • [39] Ridge detection using artificial neural networks
    Weiss, JM
    PROCEEDINGS OF THE ISCA 12TH INTERNATIONAL CONFERENCE INTELLIGENT AND ADAPTIVE SYSTEMS AND SOFTWARE ENGINEERING, 2003, : 132 - 135
  • [40] Heliport Detection Using Artificial Neural Networks
    Baseski, Emre
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2020, 86 (09): : 541 - 546