Physically Motivated Water Modeling in Control-Oriented Polymer Electrolyte Membrane Fuel Cell Stack Models

被引:6
|
作者
Du, Zhang Peng [1 ]
Kravos, Andraz [2 ]
Steindl, Christoph [3 ]
Katrasnik, Tomaz [2 ]
Jakubek, Stefan [1 ]
Hametner, Christoph [4 ]
机构
[1] TU Wien, Inst Mech & Mechatron, Getreidemarkt 9, A-1060 Vienna, Austria
[2] Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
[3] TU Wien, Inst Powertrains & Automot Technol, Getreidemarkt 9, A-1060 Vienna, Austria
[4] TU Wien, Christian Doppler Lab Innovat Control & Monitorin, Getreidemarkt 9, A-1060 Vienna, Austria
关键词
polymer electrolyte membrane fuel cell; control-oriented model; physically motivated model; water modeling; liquid water effects; analytical differentiable model; GAS-DIFFUSION-LAYER; LIQUID-WATER; PARAMETER EXTRACTION; TRANSPORT; EXCHANGE; CATHODE; SYSTEM; SATURATION; PREDICTION; CHANNELS;
D O I
10.3390/en14227693
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Polymer electrolyte membrane fuel cells (PEMFCs) are prone to membrane dehydration and liquid water flooding, negatively impacting their performance and lifetime. Therefore, PEMFCs require appropriate water management, which makes accurate water modeling indispensable. Unfortunately, available control-oriented models only replicate individual water-related aspects or use oversimplistic approximations. This paper resolves this challenge by proposing, for the first time, a control-oriented PEMFC stack model focusing on physically motivated water modeling, which covers phase change, liquid water removal, membrane water uptake, and water flooding effects on the electrochemical reaction. Parametrizing the resulting model with measurement data yielded the fitted model. The parameterized model delivers valuable insight into the water mechanisms, which were thoroughly analyzed. In summary, the proposed model enables the derivation of advanced control strategies for efficient water management and mitigation of the degradation phenomena of PEMFCs. Additionally, the model provides the required accuracy for control applications while maintaining the necessary computational efficiency.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Water balance and multiplicity in a polymer electrolyte membrane fuel cell
    Chia, ESJ
    Benziger, JB
    Kevrekidis, IG
    AICHE JOURNAL, 2004, 50 (09) : 2320 - 2324
  • [42] MODELLING OF WATER TRANSPORT IN THE POLYMER ELECTROLYTE MEMBRANE OF A FUEL CELL
    Simek, Martin
    Nemec, Tomas
    Marsik, Frantisek
    EXPERIMENTAL FLUID MECHANICS 2010, 2010, : 670 - 689
  • [43] Stack design and performance of polymer electrolyte membrane fuel cells
    Jiang, RZ
    Chu, DR
    JOURNAL OF POWER SOURCES, 2001, 93 (1-2) : 25 - 31
  • [44] An integrated modeling approach for temperature driven water transport in a polymer electrolyte fuel cell stack after shutdown
    Khandelwal, Manish
    Mench, M. M.
    JOURNAL OF POWER SOURCES, 2010, 195 (19) : 6549 - 6558
  • [45] Simulation and in situ measurement of stress distribution in a polymer electrolyte membrane fuel cell stack
    de la Cruz, Javier
    Cano, Ulises
    Romero, Tatiana
    JOURNAL OF POWER SOURCES, 2016, 329 : 273 - 280
  • [46] Dynamic modelling of a polymer electrolyte membrane fuel cell stack by nonlinear system identification
    Buchholz, M.
    Krebs, V.
    FUEL CELLS, 2007, 7 (05) : 392 - 401
  • [47] DYNAMIC SIMULATION OF A HIGH TEMPERATURE POLYMER ELECTROLYTE MEMBRANE FUEL CELL: STACK PERFORMANCE
    Rabiu, Ademola
    Nomnqa, Myalelo
    Ikhuomoregbe, Daniel
    PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012, 2012, : 505 - 512
  • [48] Analysis of the Ripple Current in a 5 kW Polymer Electrolyte Membrane Fuel Cell Stack
    Ladewig, B. P.
    Lapicque, F.
    FUEL CELLS, 2009, 9 (02) : 157 - 163
  • [49] Effect of Carbon Dioxide and Ammonia on Polymer Electrolyte Membrane Fuel Cell Stack Performance
    Rajalakshmi, N.
    Jayanth, T. T.
    Dhathathreyan, K. S.
    FUEL CELLS, 2004, 3 (04) : 177 - 180
  • [50] Continuous durability study of a high temperature polymer electrolyte membrane fuel cell stack
    Batet, David
    Zohra, Fatema T.
    Kristensen, Simon B.
    Andreasen, Soren J.
    Diekhoner, Lars
    APPLIED ENERGY, 2020, 277