Multi-Relay Assisted Computation Offloading for Multi-Access Edge Computing Systems With Energy Harvesting

被引:23
|
作者
Li, Molin [1 ]
Zhou, Xiaobo [1 ]
Qiu, Tie [1 ]
Zhao, Qinglin [2 ]
Li, Keqiu [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin Key Lab Adv Networking, Tianjin, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Ave Wei Long, Taipa, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Servers; Mobile handsets; Relays; Batteries; Energy harvesting; Heuristic algorithms; Multi-access edge computing; computation offloading; energy harvesting; multi-relay; RESOURCE-ALLOCATION; WIRELESS NETWORKS; MOBILE; OPTIMIZATION; MECHANISM; DELAY; MODEL;
D O I
10.1109/TVT.2021.3108619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In multi-access edge computing systems with energy harvesting (MEC-EH), the mobile devices are empowered with unstable energy harvested from renewable energy sources. To prolong the life of mobile devices, as many computation-intensive tasks as possible should be offloaded to the MEC server. However, when the system states of mobile device and MEC server are unstable, e.g. poor communication channel conditions, a great number of tasks will be executed locally, leading to a long execution time. Even worse, some tasks may be dropped due to low energy levels. To address this problem, in this paper, we propose a multi-relay assisted computation offloading framework for MEC-EH systems. In this framework, a computation task can be executed by offloading to the MEC server with the help of multiple relay nodes, such as the neighboring nodes. We introduce execution cost as a performance metric to incorporate both the task execution time and task failure. We then develop a low-complexity online algorithm, namely MRACO algorithm, to minimize the average execution cost. MRACO algorithm can select the optimal execution strategy for each task from (1) executing the task locally, (2) offloading it to the MEC server directly, (3) offloading it to the MEC server with the help of the most suitable neighboring nodes, and (4) simply dropping it. Moreover, we also develop an algorithm for selecting the suitable neighboring devices to act as relays and determining the optimal task splitting ratio between them. Finally, performance evaluation shows that the proposed MRACO algorithm greatly outperforms the benchmarks in terms of both average execution time and task drop rate.
引用
收藏
页码:10941 / 10956
页数:16
相关论文
共 50 条
  • [21] Joint Computation Offloading and Resource Allocation in UAV Swarms with Multi-access Edge Computing
    Liu, Wanning
    Xu, Yitao
    Qi, Nan
    Yao, Kailing
    Zhang, Yuli
    He, Wenhui
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 280 - 285
  • [22] Optimal Cooperative Offloading Scheme for Energy Efficient Multi-Access Edge Computation
    Anajemba, Joseph Henry
    Yue, Tang
    Iwendi, Celestine
    Alenezi, Mamdouh
    Mittal, Mohit
    IEEE ACCESS, 2020, 8 : 53931 - 53941
  • [23] Machine learning-based computation offloading in multi-access edge computing: A survey
    Choudhury, Alok
    Ghose, Manojit
    Islam, Akhirul
    Yogita
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 148
  • [24] Adaptive Computation Offloading Policy for Multi-Access Edge Computing in Heterogeneous Wireless Networks
    Ke, Hongchang
    Wang, Hui
    Sun, Weijia
    Sun, Hongbin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (01): : 289 - 305
  • [25] Computation Offloading for Multi-Access Mobile Edge Computing in Ultra-Dense Networks
    Guo, Hongzhi
    Liu, Jiajia
    Zhang, Jie
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (08) : 14 - 19
  • [26] A Socially-Aware Hybrid Computation Offloading Framework for Multi-Access Edge Computing
    Yu, Shuai
    Dab, Boutheina
    Movahedi, Zeinab
    Langar, Rami
    Wang, Li
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 19 (06) : 1247 - 1259
  • [27] Joint Communication, Computation, and Control for Computational Task Offloading in Vehicle-Assisted Multi-Access Edge Computing
    Dang, Tri Nguyen
    Manzoor, Aunas
    Tun, Yan Kyaw
    Kazmi, S. M. Ahsan
    Haw, Rim
    Hong, Sang Hoon
    Han, Zhu
    Hong, Choong Seon
    IEEE ACCESS, 2022, 10 : 122513 - 122529
  • [28] Resource Allocation and Computation Offloading for Multi-Access Edge Computing With Fronthaul and Backhaul Constraints
    Chen, Jun
    Chang, Zheng
    Guo, Xijuan
    Li, Renchuan
    Han, Zhu
    Hamalainen, Timo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) : 8037 - 8049
  • [29] Coalitional Games for Computation Offloading in NOMA-Enabled Multi-Access Edge Computing
    Pham, Quoc-Viet
    Nguyen, Hoang T.
    Han, Zhu
    Hwang, Won-Joo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (02) : 1982 - 1993
  • [30] Efficient Computation Offloading for Multi-Access Edge Computing in 5G HetNets
    Guo, Hongzhi
    Liu, Jiajia
    Zhang, Jie
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,