Multi-Relay Assisted Computation Offloading for Multi-Access Edge Computing Systems With Energy Harvesting

被引:23
|
作者
Li, Molin [1 ]
Zhou, Xiaobo [1 ]
Qiu, Tie [1 ]
Zhao, Qinglin [2 ]
Li, Keqiu [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin Key Lab Adv Networking, Tianjin, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Ave Wei Long, Taipa, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Servers; Mobile handsets; Relays; Batteries; Energy harvesting; Heuristic algorithms; Multi-access edge computing; computation offloading; energy harvesting; multi-relay; RESOURCE-ALLOCATION; WIRELESS NETWORKS; MOBILE; OPTIMIZATION; MECHANISM; DELAY; MODEL;
D O I
10.1109/TVT.2021.3108619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In multi-access edge computing systems with energy harvesting (MEC-EH), the mobile devices are empowered with unstable energy harvested from renewable energy sources. To prolong the life of mobile devices, as many computation-intensive tasks as possible should be offloaded to the MEC server. However, when the system states of mobile device and MEC server are unstable, e.g. poor communication channel conditions, a great number of tasks will be executed locally, leading to a long execution time. Even worse, some tasks may be dropped due to low energy levels. To address this problem, in this paper, we propose a multi-relay assisted computation offloading framework for MEC-EH systems. In this framework, a computation task can be executed by offloading to the MEC server with the help of multiple relay nodes, such as the neighboring nodes. We introduce execution cost as a performance metric to incorporate both the task execution time and task failure. We then develop a low-complexity online algorithm, namely MRACO algorithm, to minimize the average execution cost. MRACO algorithm can select the optimal execution strategy for each task from (1) executing the task locally, (2) offloading it to the MEC server directly, (3) offloading it to the MEC server with the help of the most suitable neighboring nodes, and (4) simply dropping it. Moreover, we also develop an algorithm for selecting the suitable neighboring devices to act as relays and determining the optimal task splitting ratio between them. Finally, performance evaluation shows that the proposed MRACO algorithm greatly outperforms the benchmarks in terms of both average execution time and task drop rate.
引用
收藏
页码:10941 / 10956
页数:16
相关论文
共 50 条
  • [1] Collaborative Computation Offloading for Multi-access Edge Computing
    Yu, Shuai
    Langar, Rami
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019, : 689 - 694
  • [2] The Advantage of Computation Offloading in Multi-Access Edge Computing
    Singh, Raghubir
    Armour, Simon
    Khan, Aftab
    Sooriyabandara, Mahesh
    Oikonomou, George
    2019 FOURTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2019, : 289 - 294
  • [3] Green Computation Offloading With DRL in Multi-Access Edge Computing
    Yin, Changkui
    Mao, Yingchi
    Chen, Meng
    Rong, Yi
    Liu, Yinqiu
    He, Xiaoming
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (11):
  • [4] Cooperative service caching and computation offloading in multi-access edge computing
    Zhong, Shijie
    Guo, Songtao
    Yu, Hongyan
    Wang, Quyuan
    COMPUTER NETWORKS, 2021, 189
  • [5] Computation Offloading in Resource-Constrained Multi-Access Edge Computing
    Li, Kexin
    Wang, Xingwei
    He, Qiang
    Wang, Jielei
    Li, Jie
    Zhan, Siyu
    Lu, Guoming
    Dustdar, Schahram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10665 - 10677
  • [6] Highly Immersive Telepresence with Computation Offloading to Multi-Access Edge Computing
    Kim, Younggi
    Joo, Younghyun
    Cho, Hyoyoung
    Park, Intaik
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 860 - 862
  • [7] Energy-efficient computation offloading strategy with task priority in cloud assisted multi-access edge computing
    He, Zhenli
    Xu, Yanan
    Liu, Di
    Zhou, Wei
    Li, Keqin
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 148 : 298 - 313
  • [8] Computation Offloading in Multi-Access Edge Computing: A Multi-Task Learning Approach
    Yang, Bo
    Cao, Xuelin
    Bassey, Joshua
    Li, Xiangfang
    Qian, Lijun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (09) : 2745 - 2762
  • [9] Dynamic Task Software Caching-Assisted Computation Offloading for Multi-Access Edge Computing
    Chen, Zhixiong
    Yi, Wenqiang
    Alam, Atm S.
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (10) : 6950 - 6965
  • [10] Task Offloading in Multi-Hop Relay-Aided Multi-Access Edge Computing
    Deng, Yiqin
    Chen, Zhigang
    Chen, Xianhao
    Fang, Yuguang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 1372 - 1376