Two-Dimensional Coupled Solution for Thermoelastic Beams via Generalized Dual-Phase-Lags Model

被引:23
|
作者
Zenkour, Ashraf M. [1 ,2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Kafrelsheikh Univ, Dept Math, Fac Sci, Kafr Al Sheikh 33516, Egypt
关键词
generalized thermoelasticity; dual-phase-lags; state-space approach; thermomechanical loads; HALF-SPACE; HEAT-CONDUCTION; WAVES;
D O I
10.3846/13926292.2016.1157835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized thermoelastic problem of a thick-walled simply-supported beam subjected to different applied heat source and mechanical loads at its surfaces is studied. The thermoelastic coupling differential equations of motion of the beam are established. The generalized thermoelasticity based on the dual-phase-lags (DPLs) theory is considered to treat this problem. An exact 2-D coupled solution is presented to deduce analytical expressions for the temperature, displacements and stresses. The time-harmonic motion behavior as well as the thermal and mechanical conditions at the bounded faces of the beam is used for this purpose. The effect of the DPLs on the field quantities against the axial and normal directions of the beam under thermomechanical loads is discussed. Final investigations to various thermoelastic models are made.
引用
收藏
页码:319 / 335
页数:17
相关论文
共 50 条
  • [11] NUMERICAL SIMULATION OF ELASTIC AND THERMOELASTIC WAVE PROPAGATION IN TWO-DIMENSIONAL CLASSICAL AND GENERALIZED COUPLED THERMOELASTICITY
    Zad, S. K. Hosseini
    Komeili, A.
    Akbarzadeh, A. H.
    Eslami, M. R.
    PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 2, 2010, : 135 - 145
  • [12] Two-Dimensional Fractional Order Generalized Thermoelastic Porous Material
    Abbas, Ibrahim A.
    Youssef, Hamdy M.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2015, 12 (07): : 1415 - 1431
  • [13] Comment on 'Phase transition of a two-dimensional generalized XY model'
    van Enter, Aernout C. D.
    Romano, Silvano
    Zagrebnov, Valentin A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (20)
  • [14] A TWO-DIMENSIONAL FINITE-ELEMENT IDEALIZATION FOR THERMOELASTIC DEFLECTION IN BEAMS
    ABOUAF, M
    CHENOT, JL
    MARCELIN, JL
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (10) : 1453 - 1465
  • [15] A two-dimensional thermoelastic rough surface contact model
    Lin, Y
    Ovaert, TC
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2004, 126 (03): : 430 - 435
  • [16] Growth strategy for solution-phase growth of two-dimensional nanomaterials via a unified model
    Zongkun Chen
    Ralf Schmid
    Xingkun Wang
    Mengqi Fu
    Zhongkang Han
    Qiqi Fan
    Elke Scheer
    Minghua Huang
    Peter Nielaba
    Helmut Cölfen
    Nature Synthesis, 2023, 2 : 670 - 677
  • [17] Growth strategy for solution-phase growth of two-dimensional nanomaterials via a unified model
    Chen, Zongkun
    Schmid, Ralf
    Wang, Xingkun
    Fu, Mengqi
    Han, Zhongkang
    Fan, Qiqi
    Scheer, Elke
    Huang, Minghua
    Nielaba, Peter
    Coelfen, Helmut
    NATURE SYNTHESIS, 2023, 2 (07): : 670 - 677
  • [18] A two-dimensional generalized thermoelastic diffusion problem for a half-space
    He, Tianhu
    Li, Chenlin
    Shi, Shuanhu
    Ma, Yongbin
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2015, 52 : 37 - 43
  • [19] A two-dimensional generalized thermoelastic diffusion problem for a half-space
    El-Sayed, Amany M.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2016, 21 (09) : 1045 - 1060
  • [20] Electro–magneto interaction in a two-dimensional generalized thermoelastic solid cylinder
    Hany H. Sherief
    Allam A. Allam
    Acta Mechanica, 2017, 228 : 2041 - 2062