Kernel density estimation with Berkson error

被引:2
|
作者
Long, James P. [1 ]
El Karoui, Noureddine [2 ]
Rice, John A. [2 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Univ Calif Berkeley, Dept Stat, 367 Evans Hall 3860, Berkeley, CA 94720 USA
关键词
Bandwidth selection; Berkson error; kernel density estimation; measurement error; multivariate density estimation; BANDWIDTH SELECTION;
D O I
10.1002/cjs.11281
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a sample {X-i}(i=1)(n) from f(X) we construct kernel density estimators for f(Y), the convolution of f(X) with a known error density f(epsilon). This problem is known as density estimation with Berkson error and has applications in epidemiology and astronomy. Little is understood about bandwidth selection for Berkson density estimation. We compare three approaches to selecting the bandwidth both asymptotically, using large-sample approximations to the MISE, and at finite samples, using simulations. Our results highlight the relationship between the structure of the error f(epsilon) and the optimal bandwidth. In particular the results demonstrate the importance of smoothing when the error term f(epsilon) is concentrated near 0. We propose a data-driven bandwidth estimator and test its performance on NO2 exposure data. (C) 2016 Statistical Society of Canada
引用
收藏
页码:142 / 160
页数:19
相关论文
共 50 条
  • [21] Variable kernel density estimation
    Hazelton, ML
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) : 271 - 284
  • [22] Filtered kernel density estimation
    Marchette, DJ
    Priebe, CE
    Rogers, GW
    Solka, JL
    COMPUTATIONAL STATISTICS, 1996, 11 (02) : 95 - 112
  • [23] A stat istical model for wind power forecast error based on kernel density estimation
    Liu, Liyang, 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (08):
  • [24] From Gaussian kernel density estimation to kernel methods
    Shitong Wang
    Zhaohong Deng
    Fu-lai Chung
    Wenjun Hu
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 119 - 137
  • [25] From Gaussian kernel density estimation to kernel methods
    Wang, Shitong
    Deng, Zhaohong
    Chung, Fu-lai
    Hu, Wenjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 119 - 137
  • [26] Adaptive kernel density estimation using beta kernel
    Yin, Xun-Fu
    Hao, Zhi-Feng
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3293 - +
  • [27] Statistical Edge Detection in CT Image by Kernel Density Estimation and Mean Square Error Distance
    Xu, Xu
    Cui, Yi
    Guo, Shuxu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (05) : 1162 - 1170
  • [28] AN EFFECTIVE IMAGE RETRIEVAL METHOD BASED ON KERNEL DENSITY ESTIMATION OF COLLAGE ERROR AND MOMENT INVARIANTS
    Zhang Qin
    Huang Xiaoqing
    Liu Wenbo
    Zhu Yongjun
    Le Jun
    JournalofElectronics(China), 2013, 30 (04) : 391 - 400
  • [29] A Simple Approach to Traffic Density Estimation by using Kernel Density Estimation
    Yilan, Mikail
    Ozdemir, Mehmet Kemal
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1865 - 1868
  • [30] Kernel density estimation for random fields (density estimation for random fields)
    Carbon, M
    Tran, LT
    Wu, B
    STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) : 115 - 125