Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation
被引:56
|
作者:
Chen, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Chen, Peng
[1
]
Tang, X. H.
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Tang, X. H.
[1
]
机构:
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
By using the symmetric mountain pass theorem, we establish some existence criteria to guarantee the fourth-order difference system Delta(4)u(n - 2) + q(n)u(n) = f(n, u(n + 1),u(n), u(n - 1)) have infinitely many homoclinic orbits, where n is an element of Z; u is an element of R-N; q : Z -> R-NxN and f : Z x R-3N -> R are no periodic in n. (C) 2010 Elsevier Inc. All rights reserved.
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Zhang, Zhenzhen
Shang, Xudong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Taizhou Coll, Sch Math, Taizhou 225300, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Shang, Xudong
Zhang, Jihui
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing, Peoples R China
Jiangnan Univ, Sch Sci, Wuxi, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing, Peoples R China
Yang, Yang
Zhang, Jihui
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing, Peoples R China
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Zhang, Qingye
Liu, Chungen
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China