Aerosol absorption and radiative forcing

被引:192
|
作者
Stier, P. [1 ]
Seinfeld, J. H.
Kinne, S.
Boucher, O.
机构
[1] CALTECH, Dept Environm Sci, Pasadena, CA 91125 USA
[2] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
[3] Max Planck Inst Meteorol, Aerol Clouds Climate, Hamburg, Germany
[4] Hadley Ctr Climate Change, Meteorol Off, Exceter, England
关键词
D O I
10.5194/acp-7-5237-2007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53Wm(-2) (33%) and all-sky from -0.47 to -0.13 Wm(-2) (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(-2) (36%) clear-sky and of 0.12 Wm(-2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05Wm(-2) and a positive TOA forcing perturbation of 0.02 Wm(-2). The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.
引用
收藏
页码:5237 / 5261
页数:25
相关论文
共 50 条
  • [41] Determination of Aerosol Characteristics and Direct Radiative Forcing at Pune
    Pawar, G. V.
    Devara, P. C. S.
    More, S. D.
    Kumar, P. Pradeep
    Aher, G. R.
    AEROSOL AND AIR QUALITY RESEARCH, 2012, 12 (06) : 1166 - 1180
  • [42] Direct SW aerosol radiative forcing over portugal
    Santos, D.
    Costa, M. J.
    Silva, A. M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (19) : 5771 - 5786
  • [43] Aerosol optical properties and direct radiative forcing in Tianjin
    Liu, Jing-Le
    Shi, Jing
    Jiang, Ming
    Cai, Zi-Ying
    Yao, Qing
    Han, Su-Qin
    Zhongguo Huanjing Kexue/China Environmental Science, 2024, 44 (12): : 6590 - 6599
  • [44] Characterization of a rural aerosol and its resulting radiative forcing
    Dillner, A.M.
    Larson, S.M.
    Omar, A.H.
    Journal of Aerosol Science, 1998, 29 (SUPPL.2):
  • [45] Bounding Global Aerosol Radiative Forcing of Climate Change
    Bellouin, N.
    Quaas, J.
    Gryspeerdt, E.
    Kinne, S.
    Stier, P.
    Watson-Parris, D.
    Boucher, O.
    Carslaw, K. S.
    Christensen, M.
    Daniau, A. -L.
    Dufresne, J. -L.
    Feingold, G.
    Fiedler, S.
    Forster, P.
    Gettelman, A.
    Haywood, J. M.
    Lohmann, U.
    Malavelle, F.
    Mauritsen, T.
    McCoy, D. T.
    Myhre, G.
    Muelmenstaedt, J.
    Neubauer, D.
    Possner, A.
    Rugenstein, M.
    Sato, Y.
    Schulz, M.
    Schwartz, S. E.
    Sourdeval, O.
    Storelvmo, T.
    Toll, V.
    Winker, D.
    Stevens, B.
    REVIEWS OF GEOPHYSICS, 2020, 58 (01)
  • [46] Aerosol optical characteristics and radiative forcing in urban Beijing
    Zhao, Shuman
    Hu, Bo
    Du, Chaojie
    Tang, Liqin
    Ma, Yongjing
    Liu, Hui
    Zou, Jianan
    Liu, Zirui
    Wei, Jie
    Wang, Yuesi
    ATMOSPHERIC ENVIRONMENT, 2019, 212 : 41 - 53
  • [47] Effect of clouds on direct aerosol radiative forcing of climate
    Liao, H
    Seinfeld, JH
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D4) : 3781 - 3788
  • [48] The Earth's energy budget and aerosol radiative forcing
    Murphy, D. M.
    Solomon, S.
    Portmann, R. W.
    Rosenlof, K. H.
    Forster, P. M.
    Wong, T.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A921 - A921
  • [49] Comparison of Aerosol Radiative Forcing Observed by AERONET and MODIS at Xianghe Station - Comparison of the Aerosol Product and Its Radiative Forcing between AERONET and MODIS
    Wang, Yan
    Zhao, Fengsheng
    Li, Zhengqiang
    PIERS 2011 SUZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2011, : 1076 - 1079
  • [50] Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing
    Chen, Cheng
    Dubovik, Oleg
    Schuster, Gregory L.
    Chin, Mian
    Henze, Daven K.
    Lapyonok, Tatyana
    Li, Zhengqiang
    Derimian, Yevgeny
    Zhang, Ying
    NATURE COMMUNICATIONS, 2022, 13 (01)