The divisible sandpile with heavy-tailed variables

被引:3
|
作者
Cipriani, Alessandra [1 ]
Hazra, Rajat Subhra [2 ]
Ruszel, Wioletta M. [3 ]
机构
[1] Univ Bath, Bath, Avon, England
[2] Indian Stat Inst, Kolkata, India
[3] Delft Univ Technol, Delft, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Divisible sandpile; Heavy-tailed variables; alpha-stable random distribution; ENTROPIC REPULSION; BANACH-SPACES; MODELS;
D O I
10.1016/j.spa.2017.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work deals with the divisible sandpile model when an initial configuration sampled from a heavy-tailed distribution. Extending results of Levine et al. (2015) and Cipriani et al. (2016) we determine sufficient conditions for stabilization and non-stabilization on infinite graphs. We determine furthermore that the scaling limit of the odometer on the torus is an alpha-stable random distribution. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3054 / 3081
页数:28
相关论文
共 50 条
  • [21] Asymptotic Behavior of Product of Two Heavy-tailed Dependent Random Variables
    Vahid RANJBAR
    Mohammad AMINI
    Jaap GELUK
    Abolghasem BOZORGNIA
    数学学报, 2013, 56 (02) : 295 - 295
  • [22] Causal modelling of heavy-tailed variables and confounders with application to river flow
    Pasche, Olivier C.
    Chavez-Demoulin, Valerie
    Davison, Anthony C.
    EXTREMES, 2023, 26 (03) : 573 - 594
  • [23] Asymptotic Behavior of Convolution of Dependent Random Variables with Heavy-Tailed Distributions
    Ranjbar, Vahid Y.
    Amini, Mohammad
    Bozorgnia, Abolghasem
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (01): : 21 - 34
  • [24] A symptotic Behavior of Convolution of Dependent Random Variables with Heavy-Tailed Distributions
    Ranjbar, V. Y.
    Amini, M.
    Bozorgnia, A.
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (02): : 217 - 230
  • [25] Causal modelling of heavy-tailed variables and confounders with application to river flow
    Olivier C. Pasche
    Valérie Chavez-Demoulin
    Anthony C. Davison
    Extremes, 2023, 26 : 573 - 594
  • [26] Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights
    Stilian A. Stoev
    Murad S. Taqqu
    Methodology and Computing in Applied Probability, 2007, 9 : 55 - 87
  • [27] Asymptotic behavior of product of two heavy-tailed dependent random variables
    Ranjbar, Vahid
    Amini, Mohammad
    Geluk, Jaap
    Bozorgnia, Abolghasem
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (02) : 355 - 364
  • [28] Well-Posed Bayesian Inverse Problems with Infinitely Divisible and Heavy-Tailed Prior Measures
    Hosseini, Bamdad
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 1048 - 1084
  • [29] Heavy-Tailed Density Estimation
    Tokdar, Surya T.
    Jiang, Sheng
    Cunningham, Erika L.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 163 - 175
  • [30] On aggregation for heavy-tailed classes
    Shahar Mendelson
    Probability Theory and Related Fields, 2017, 168 : 641 - 674