On almost periodic sequences

被引:0
|
作者
Bezivin, JP [1 ]
机构
[1] Univ Caen, Dept Math, F-14032 Caen, France
关键词
D O I
10.1007/s000130050218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence u = (u(n)) of complex numbers is said to be algebraic (differentially finite) if the generating power series [GRAPHICS] is algebraic over C(z) (satisfy a linear differential equation with polynomial coefficients). In this note, we study such sequences that belongs to the space of almost periodic sequences, i .e. the completion of the space spanned by the sequences c(theta)(n) = theta(n), theta is an element of U = {z is an element of C; \z\ = 1} under the semi-norm [GRAPHICS]
引用
收藏
页码:447 / 454
页数:8
相关论文
共 50 条
  • [1] Almost periodic sequences
    Muchnik, A
    Semenov, A
    Ushakov, M
    THEORETICAL COMPUTER SCIENCE, 2003, 304 (1-3) : 1 - 33
  • [2] FIELDS OF ALMOST PERIODIC SEQUENCES
    BAUM, LE
    HERZBERG, NP
    LOMONACO, SJ
    SWEET, MM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (02) : 169 - 180
  • [3] Rotation sets and almost periodic sequences
    Jaeger, T.
    Passeggi, A.
    Stimac, S.
    MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) : 271 - 284
  • [4] Recurrent and almost-periodic sequences
    Lutz G. Lucht
    Archiv der Mathematik, 1997, 68 : 22 - 26
  • [5] Recurrent and almost-periodic sequences
    Lucht, LG
    ARCHIV DER MATHEMATIK, 1997, 68 (01) : 22 - 26
  • [6] Generalized ρ-Almost Periodic Sequences and Applications
    Kostic, Marko
    Chaouchi, Belkacem
    Du, Wei-Shih
    Velinov, Daniel
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [7] Almost periodic random sequences in probability
    Han, Yuliang
    Hong, Jialin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 962 - 974
  • [8] Rotation sets and almost periodic sequences
    T. Jäger
    A. Passeggi
    S. Štimac
    Mathematische Zeitschrift, 2016, 284 : 271 - 284
  • [9] Almost-periodic sequences and pseudo-random sequences
    France, MM
    MATHEMATICS OF LONG-RANGE APERIODIC ORDER, 1997, 489 : 367 - 376
  • [10] On Almost-Periodic Operators in the Spaces of Sequences
    G. Bruno
    A. Pankov
    Yu. Tverdokhleb
    Acta Applicandae Mathematica, 2001, 65 : 153 - 167