Recurrent and almost-periodic sequences

被引:2
|
作者
Lucht, LG
机构
[1] Institut für Mathematik, Tech. Universität Clausthal, D-38678 Clausthal-Zellerfeld
关键词
11B37;
D O I
10.1007/PL00000390
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence g: N --> C is called almost-periodic if it belongs to the completion A(1) of the C-linear space spanned by the sequences e(theta) with theta is an element of R/Z, where e(theta)(n) = e(2 pi i theta n) for n is an element of N, under the semi-norm \\g\\(1) = (x-->infinity)lim sup 1/x (n less than or equal to x)Sigma \g(n)\. Every g is an element of A(1) has a mean value M(g) = (x --> infinity)lim 1/x n less than or equal to x Sigma g(n). A sequence g: N --> C is called recurrent if it satisfies a linear recurrence equation of the form g(n + k) + a(k - 1)g(n + k - 1) + ... + a(0)g(n) = 0 (n is an element of N, n > n(0)) with coefficients a(k - 1),..., a(0) is an element of C, a(0) not equal 0, and with some numbers k, n(0) is an element of N boolean OR {0}. Let R denote the space of recurrent sequences. It is shown that a sequence g is an element of A(1) cannot belong to R if M(ge(theta) not equal 0 for infinitely many theta is an element of R/Z, which extends a recent result of Spilker. The proof is based on Kronecker's rationality test.
引用
收藏
页码:22 / 26
页数:5
相关论文
共 50 条
  • [1] Recurrent and almost-periodic sequences
    Lutz G. Lucht
    Archiv der Mathematik, 1997, 68 : 22 - 26
  • [2] On Almost-Periodic Operators in the Spaces of Sequences
    G. Bruno
    A. Pankov
    Yu. Tverdokhleb
    Acta Applicandae Mathematica, 2001, 65 : 153 - 167
  • [3] On almost-periodic operators in the spaces of sequences
    Bruno, G
    Pankov, A
    Tverdokhleb, Y
    ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) : 153 - 167
  • [4] Almost-periodic sequences and pseudo-random sequences
    France, MM
    MATHEMATICS OF LONG-RANGE APERIODIC ORDER, 1997, 489 : 367 - 376
  • [5] Kolmogorov complexity of prefixes of almost-periodic sequences
    Ushakov, M.A.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2004, (04): : 3 - 7
  • [6] UNIFORMLY DISTRIBUTED SEQUENCES AND WEAKLY ALMOST-PERIODIC FUNCTIONS
    HANSEL, G
    TROALLIC, JP
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1980, 108 (02): : 207 - 212
  • [8] Almost maximally almost-periodic group topologies determined by T-sequences
    Lukacs, Gabor
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) : 2922 - 2932
  • [9] Almost-periodic multipliers
    Bruno, G
    Grande, R
    Iannacci, R
    ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) : 137 - 151
  • [10] Almost-Periodic Multipliers
    Giordano Bruno
    Renato Grande
    Rita Iannacci
    Acta Applicandae Mathematica, 2001, 65 : 137 - 151