Improving Multiclass Text Classification with Error-Correcting Output Coding and Sub-class Partitions

被引:0
|
作者
Li, Baoli [1 ]
Vogel, Carl [1 ]
机构
[1] Trinity Coll Dublin, Sch Comp Sci & Stat, Dublin, Ireland
关键词
Text Classification; Error Correcting Output Coding; Binary Classification; ECOC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Error-Correcting Output Coding (ECOC) is a general framework for multiclass text classification with a set of binary classifiers. It can not only help a binary classifier solve multi-class classification problems, but also boost the performance of a multi-class classifier. When building each individual binary classifier in ECOC, multiple classes are randomly grouped into two disjoint groups: positive and negative. However, when training such a binary classifier, sub-class distribution within positive and negative classes is neglected. Utilizing this information is expected to improve a binary classifier. We thus design a simple binary classification strategy via multi-class categorization (2vM) to make use of sub-class partition information, which can lead to better performance over the traditional binary classification. The proposed binary classification strategy is then applied to enhance ECOC. Experiments on document categorization and question classification show its effectiveness.
引用
收藏
页码:4 / 15
页数:12
相关论文
共 50 条
  • [21] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Antonio Gutierrez, Pedro
    Hervas-Martinez, Cesar
    NEURAL PROCESSING LETTERS, 2022,
  • [22] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5299 - 5330
  • [23] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 3 - 13
  • [24] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Javier Barbero-Gómez
    Pedro Antonio Gutiérrez
    César Hervás-Martínez
    Neural Processing Letters, 2023, 55 : 5299 - 5330
  • [25] A Randomised Ensemble Learning Approach for Multiclass Motor Imagery Classification Using Error Correcting Output Coding
    Bera, Sutanu
    Roy, Rinku
    Sikdar, Debdeep
    Kar, Aupendu
    Mukhopadhyay, Rupsha
    Mahadevappa, Manjunatha
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5081 - 5084
  • [26] Improvement of performance in multiclass problems by using biclassification based on error-correcting output code
    Kim, Young Bun
    Oh, Jung Hun
    Gao, Jean
    WCECS 2007: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2007, : 677 - 682
  • [27] Error-correcting output codes for multi-label emotion classification
    Chao Li
    Zhiyong Feng
    Chao Xu
    Multimedia Tools and Applications, 2016, 75 : 14399 - 14416
  • [28] Mutual Information Measures for Subclass Error-Correcting Output Codes Classification
    Arvanitopoulos, Nikolaos
    Bouzas, Dimitrios
    Tefas, Anastasios
    ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, PROCEEDINGS, 2010, 6040 : 19 - +
  • [29] An overview of multi-classification based on error-correcting output codes
    Lei, Lei, 1794, Chinese Institute of Electronics (42):
  • [30] Error-correcting output codes for multi-label emotion classification
    Li, Chao
    Feng, Zhiyong
    Xu, Chao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (22) : 14399 - 14416