Empirical wavelet transform based automated alcoholism detecting using EEG signal features

被引:34
|
作者
Anuragi, Arti [1 ]
Sisodia, Dilip Singh [1 ]
机构
[1] Natl Inst Technol Raipur, GE Rd, Raipur 492010, Madhya Pradesh, India
关键词
Signal processing; Electroencephalograms (EEGs); Alcoholism; Empirical wavelet transform (EWT); Hilbert-Huang transform (HHT); TIME; CLASSIFICATION; DECOMPOSITION; DIAGNOSIS;
D O I
10.1016/j.bspc.2019.101777
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electroencephalogram (EEG) signals are well used to characterize the brain states and actions. In this paper, a novel empirical wavelet transform (EWT) based machine learning framework is proposed for the classification of alcoholic and normal subjects using EEG signals. In the framework, the adaptive filtering is used to extract Time-Frequency-domain features from Hilbert-Huang Transform (HHT). The boundary detection method is used for segmenting the Fourier spectrum of the EEG signals to represent in scale-space. Hilbert-Huang Transform (HHT) examines time and frequency information in a single domain using instantaneous amplitude (IA) and instantaneous frequency (IF). The IA and IF are used to form intrinsic mode functions (IMF). The empirical wavelets transform (EWT) using Hilbert-Huang transforms (HHT) extract the statistical features such as mean, standard deviation, variance, skewness, kurtosis, Shannon entropy, and log entropy from each of the intrinsic mode functions (IMF). The extracted features are evaluated by t-test for finding the most significant features. The significant feature matrix is fed to various classification algorithms listed as least square-support vector machine (LS-SVM), support vector machine (SVM), Naive Bayes (NB), and k-Nearest Neighbors (K-NN). The leave-one-out cross validation (LOOCV) is used for training and testing of used models to minimize the chance of overfitting. The results suggest that the highest numbers of the positive samples are obtained using LS-SVM classifier with the polynomial kernel. The LS-SVM also achieved an average accuracy of 98.75%, the sensitivity 98.35%, specificity 99.16%, the precision 99.17%, F-measure 98.76%, and Matthews Correlation Coefficient (MCC) 97.50%. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Implementation of Schizophrenia Diagnosis with EEG Signal using Stationary Wavelet Transform and Linear Wavelet Transform Algorithm
    Priya, P.
    Priy, M. Vishnu
    Chokkkattu, JerryJoe
    2022 14TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS), 2022,
  • [32] EEG-based motor imagery analysis using weighted wavelet transform features
    Hsu, Wei-Yen
    Sun, Yung-Nien
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 176 (02) : 310 - 318
  • [33] Classification of alcoholic EEG signals using wavelet scattering transform-based features
    Buriro, Abdul Baseer
    Ahmed, Bilal
    Baloch, Gulsher
    Ahmed, Junaid
    Shoorangiz, Reza
    Weddell, Stephen J.
    Jones, Richard D.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 139
  • [34] Automated Classification of Epileptiform Discharges in EEG Signals Using the Wavelet Transform
    Tautan, Alexandra Maria
    Munteanu, Ana Ilinca
    Taralunga, Dragos Daniel
    Strungaru, Rodica
    Ungureanu, Georgeta Mihaela
    2018 INTERNATIONAL CONFERENCE AND EXPOSITION ON ELECTRICAL AND POWER ENGINEERING (EPE), 2018, : 877 - 882
  • [35] Empirical Wavelet Transform Based ECG Signal Filtering Method
    Elouaham, S.
    Dliou, A.
    Jenkal, W.
    Louzazni, M.
    Zougagh, H.
    Dlimi, S.
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2024, 2024
  • [36] Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images
    Maheshwari, Shishir
    Pachori, Ram Bilas
    Acharya, U. Rajendra
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (03) : 803 - 813
  • [37] Apply wavelet transform to analyse EEG signal
    Li, Y
    Zhang, SX
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1007 - 1008
  • [38] Rolling bearing fault diagnosis based empirical wavelet transform using vibration signal
    Merainani, Boualem
    Rahmoune, Chemseddine
    Benazzouz, Djamel
    Ould-Bouamama, Belkacem
    PROCEEDINGS OF 2016 8TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC 2016), 2016, : 526 - 531
  • [39] Spectral Graph Wavelet Transform-Based Feature Representation for Automated Classification of Emotions From EEG Signal
    Krishna, Rahul
    Das, Kritiprasanna
    Meena, Hemant Kumar
    Pachori, Ram Bilas
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 31229 - 31236
  • [40] EEG Signal Analysis Using Wavelet Transform for Driver Status Detection
    Nissimagoudar, P. C.
    Nandi, Anilkumar, V
    Gireesha, H. M.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, 2019, 939 : 56 - 65