Correlations in the thermodynamical theory of phase transitions of the second kind. III

被引:0
|
作者
Kanyuka, AK
Glukhov, VS
机构
[1] Stanford Univ, Stanford DNA STC, Palo Alto, CA 94304 USA
[2] Ukrainian Acad Sci, Inst Met Phys, UA-252680 Kiev, Ukraine
来源
PHYSICA A | 1998年 / 258卷 / 1-2期
关键词
phase transitions; critical exponents; phenomenology;
D O I
10.1016/S0378-4371(98)00226-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the frameworks of the geometrical approach developed earlier, the situation is considered when in the branch point of the zero-field curve the first non-vanishing derivatives of the Gibbs potential w.r.t., the order parameters are of the sixth order, and w.r.t. the "critical" correlation parameters are of the tenth order. The conditions are determined when a second-order phase transition is possible in the branch point of the zero-filed curve. The critical exponents obtained are alpha(1) = alpha(1)', = 0, alpha(2) = alpha(2') = -1/5, beta = 2/5, gamma = gamma' = 6/5, delta = 4, epsilon = 0. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 50 条
  • [31] THE THEORY OF PHASE-TRANSITIONS OF THE 1ST KIND
    MARTYNOV, GA
    SARKISOV, GN
    DOKLADY AKADEMII NAUK SSSR, 1981, 261 (01): : 79 - 82
  • [32] Prandtl’s Secondary Flows of the Second Kind. Problems of Description, Prediction, and Simulation
    N. V. Nikitin
    N. V. Popelenskaya
    A. Stroh
    Fluid Dynamics, 2021, 56 : 513 - 538
  • [33] NONSTEADY TEMPERATURE FIELD IN THERMOSENSITIVE BODY WITH DISCONTINUOUS BOUNDARY CONDITIONS OF THE SECOND KIND.
    Kolyano, Yu.M.
    Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1987, 53 (03): : 1072 - 1079
  • [34] Prandtl's Secondary Flows of the Second Kind. Problems of Description, Prediction, and Simulation
    Nikitin, N., V
    Popelenskaya, N., V
    Stroh, A.
    FLUID DYNAMICS, 2021, 56 (04) : 513 - 538
  • [35] SECONDARY FLOWS OF PRANDTL'S SECOND KIND. MECHANISM OF FORMATION AND METHODS OF PREDICTION
    Nikitin, Nikolay
    THEORETICAL AND APPLIED MECHANICS, 2023, 50 (02) : 145 - 157
  • [36] DIGITAL COMPUTERS FOR SOLVING FREDHOLM-TYPE INTEGRAL EQUATIONS OF THE SECOND KIND.
    Boyun, V.P.
    Kozlov, L.G.
    Trakai, V.G.
    1984, (03):
  • [37] Several remarks on Mr. Bpltzmann'a theory for collisions of any kind.
    von Wesendonk, K
    PHYSIKALISCHE ZEITSCHRIFT, 1907, 8 : 179 - 182
  • [38] SOLUTION OF THE UNSTEADY HEAT CONDUCTION PROBLEM WITH BOUNDARY CONDITIONS OF THE FIRST, SECOND, AND THIRD KIND.
    Barvinok, V.A.
    Bogdanovich, V.I.
    Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 1980, 23 (02): : 11 - 15
  • [39] ON THEORY OF SECOND-ORDER MAGNETIC PHASE TRANSITIONS
    SOLYOM, J
    ACTA CRYSTALLOGRAPHICA, 1966, S 21 : A100 - &
  • [40] QUANTUM THEORY OF SECOND-ORDER PHASE TRANSITIONS
    KOBELEV, LY
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1967, 24 (03): : 10 - &