Homological dimensions of the extension algebras of monomial algebras

被引:1
|
作者
Shi, Hong Bo [2 ,1 ]
机构
[1] Nanjing Univ Finance & Econ, Dept Math, Nanjing 210046, Peoples R China
关键词
Topdown; bottomup; dimension tree; syzygy; finitistic dimensions; FINITISTIC DIMENSION; CONJECTURE;
D O I
10.1007/s10114-015-3623-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to study the dimension trees and further the homological dimensions of the extension algebras - dual and trivially twisted extensions - with a unified combinatorial approach using the two combinatorial algorithms - Topdown and Bottomup. We first present a more complete and clearer picture of a dimension tree, with which we are then able, on the one hand, to sharpen some results obtained before and furthermore reveal a few more hidden subtle homological phenomenons of or connections between the involved algebras; on the other hand, to provide two more efficient combinatorial algorithms for computing dimension trees, and consequently the homological dimensions as an application. We believe that the more refined complete structural information on dimension trees will be useful to study other homological properties of this class of extension algebras.
引用
收藏
页码:675 / 694
页数:20
相关论文
共 50 条
  • [41] BASIS FOR MONOMIAL ALGEBRAS
    CONLON, SB
    JOURNAL OF ALGEBRA, 1972, 20 (02) : 396 - &
  • [42] Monomial Hopf algebras
    Chen, XW
    Huang, HL
    Ye, Y
    Zhang, P
    JOURNAL OF ALGEBRA, 2004, 275 (01) : 212 - 232
  • [43] RIGID MONOMIAL ALGEBRAS
    CIBILS, C
    MATHEMATISCHE ANNALEN, 1991, 289 (01) : 95 - 109
  • [44] Covering monomial algebras
    Noerenberg, R.
    Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, : 161 - 164
  • [45] Extension dimensions of derived and stable equivalent algebras
    Zhang, Jinbi
    Zheng, Junling
    JOURNAL OF ALGEBRA, 2024, 646 : 17 - 48
  • [46] LEFT MONOMIAL RINGS - A GENERALIZATION OF MONOMIAL ALGEBRAS
    BURGESS, WD
    FULLER, KR
    GREEN, EL
    ZACHARIA, D
    OSAKA JOURNAL OF MATHEMATICS, 1993, 30 (03) : 543 - 558
  • [47] GRADED ARTIN-ALGEBRAS, RATIONAL SERIES, AND BOUNDS FOR HOMOLOGICAL DIMENSIONS
    ZACHARIA, D
    JOURNAL OF ALGEBRA, 1987, 106 (02) : 476 - 483
  • [48] HOMOLOGICAL DIMENSION AND REPRESENTATION TYPE OF ALGEBRAS UNDER BASE FIELD EXTENSION
    JENSEN, CU
    LENZING, H
    MANUSCRIPTA MATHEMATICA, 1982, 39 (01) : 1 - 13
  • [49] Homological dimensions and Van den Bergh isomorphisms for nuclear Frechet algebras
    Pirkovskii, A. Yu.
    IZVESTIYA MATHEMATICS, 2012, 76 (04) : 702 - 759
  • [50] TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS
    Gatica, Maria Andrea
    Hernandez, Maria Valeria
    Platzeck, Maria Ines
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 173 - 196