Experimental analysis of pore-scale flow and transport in porous media

被引:88
|
作者
Rashidi, M
Peurrung, L
Tompson, AFB
Kulp, TJ
机构
[1] Battelle, Pacific Northwest Laboratories, Richland
[2] Sandia National Laboratories, Livermore
[3] Environmental Programs Department, Lawrence Livermore Natl. Laboratory, University of California, Livermore
关键词
transport; porous media; pore-scale flow; microscopic measurement; refractive index-matching; 3D imaging; velocimetry;
D O I
10.1016/0309-1708(95)00048-8
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
A novel, non-intrusive fluorescence imaging technique has been used to quantitatively measure the pore geometry, fluid velocity, and solute concentration within a saturated, three-dimensional porous medium. Discrete numerical averages of these quantities have been made over a representative volume of the medium and used to estimate macroscopic quantities that appear in conventional continuum models of flow and transport. The approach is meant to illustrate how microscopic information can be measured, averaged, and used to characterize medium-scale processes that are typically approximated constitutively. The experimental system consisted of a clear, cylindrical column packed with clear spherical beads and a refractive index-matched fluid seeded with fluorescent tracer particles and solute dye. By illuminating the fluid within the column with a scanning planar laser beam, details of flow and concentration within the pore spaces can be quantitatively observed, allowing for three-dimensional, time dependent information to be obtained at good resolution. In the current experiment, volumetrically averaged velocities and void-to-volume ratios are first compared with bulk measurements of fluid flux and medium porosity. Microscopic measurements of concentration are then used to construct cross-sectionally averaged profiles, mean breakthrough curves, and direct measurements of the dispersive flux, velocity variance, and concentration variance. In turn, the dispersive flux measurements are compared with mean concentration gradients to provide a basis for confirming the Fickian dispersion model and estimating dispersion coefficients for the medium. Coefficients determined in this manner are compared with others based upon traditional length-scale arguments, mean breakthrough analyses, and curve fits with numerical simulations.
引用
收藏
页码:163 / 180
页数:18
相关论文
共 50 条
  • [31] Pore-scale modeling of solute transport in partially-saturated porous media
    Saeibehrouzi, Ali
    Abolfathi, Soroush
    Denissenko, Petr
    Holtzman, Ran
    EARTH-SCIENCE REVIEWS, 2024, 256
  • [32] Pore-scale visualization of colloid transport and retention in partly saturated porous media
    Crist, JT
    McCarthy, JF
    Zevi, Y
    Baveye, P
    Throop, JA
    Steenhuis, TS
    VADOSE ZONE JOURNAL, 2004, 3 (02): : 444 - 450
  • [33] Modeling flow and deformation in porous media from pore-scale to the Darcy-scale
    Hilliard, Zachary
    Evans, T. Matthew
    Peszynska, Malgorzata
    RESULTS IN APPLIED MATHEMATICS, 2024, 22
  • [34] Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media
    Kang, Qinjun
    Lichtner, Peter C.
    Zhang, Dongxiao
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B5)
  • [35] Pore-scale model for multi-component reactive transport in porous media
    Kang, QJ
    Lichtner, PC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1719 - U1719
  • [36] Pore-Scale Analysis of NAPL Blob Dissolution and Mobilization in Porous Media
    Corapcioglu, M. Yavuz
    Yoon, Sunhee
    Chowdhury, Sabina
    TRANSPORT IN POROUS MEDIA, 2009, 79 (03) : 419 - 442
  • [37] Pore-Scale Analysis of NAPL Blob Dissolution and Mobilization in Porous Media
    M. Yavuz Corapcioglu
    Sunhee Yoon
    Sabina Chowdhury
    Transport in Porous Media, 2009, 79 : 419 - 442
  • [38] Pore-scale modeling of water-gas flow in heterogeneous porous media
    Shi, Haidong
    Zhu, Qingyuan
    Chen, Zhangxin
    Li, Jing
    Feng, Dong
    Zhang, Shengting
    Ye, Jiawei
    Wu, Keliu
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [39] Investigation of pore geometry influence on fluid flow in heterogeneous porous media: A pore-scale study
    Soltanmohammadi, Ramin
    Iraji, Shohreh
    de Almeida, Tales Rodrigues
    Basso, Mateus
    Munoz, Eddy Ruidiaz
    Vidal, Alexandre Campane
    ENERGY GEOSCIENCE, 2024, 5 (01):
  • [40] A PORE-SCALE APPROACH OF TWO-PHASE FLOW IN GRANULAR POROUS MEDIA
    Yuan, C.
    Chareyre, B.
    Darve, F.
    PARTICLE-BASED METHODS IV-FUNDAMENTALS AND APPLICATIONS, 2015, : 957 - 968