Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network

被引:8
|
作者
Lee, Cheng-Ming [1 ]
Ko, Chia-Nan [2 ]
机构
[1] Nan Kai Univ Technol, Dept Digital Living Innovat, Nantou 542, Taiwan
[2] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
关键词
short-term load forecasting; radial basis function neural network; support vector regression; particle swarm optimization; adaptive annealing learning algorithm; MODEL; IDENTIFICATION; ELECTRICITY; REGRESSION; DEMAND;
D O I
10.3390/en9120987
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A reinforcement learning algorithm is proposed to improve the accuracy of short-term load forecasting (STLF) in this article. The proposed model integrates radial basis function neural network (RBFNN), support vector regression (SVR), and adaptive annealing learning algorithm (AALA). In the proposed methodology, firstly, the initial structure of RBFNN is determined by using an SVR. Then, an AALA with time-varying learning rates is used to optimize the initial parameters of SVR-RBFNN (AALA-SVR-RBFNN). In order to overcome the stagnation for searching optimal RBFNN, a particle swarm optimization (PSO) is applied to simultaneously find promising learning rates in AALA. Finally, the short-term load demands are predicted by using the optimal RBFNN. The performance of the proposed methodology is verified on the actual load dataset from the Taiwan Power Company (TPC). Simulation results reveal that the proposed AALA-SVR-RBFNN can achieve a better load forecasting precision compared to various RBFNNs.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Short-term load forecasting based on fuzzy neural network
    Wang, Cuiru
    Cui, Zhikun
    Chen, Qi
    IITA 2007: WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, PROCEEDINGS, 2007, : 335 - 338
  • [22] Short-term Load Forecasting Based on BP Neural Network
    Li Yan-bin
    Li Peng
    Li Guan-hong
    ICPOM2008: PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE OF PRODUCTION AND OPERATION MANAGEMENT, VOLUMES 1-3, 2008, : 1182 - 1186
  • [23] Short-term load forecasting based on fuzzy neural network
    DONG Liang
    MU Zhichun (Information Engineering School
    Journal of University of Science and Technology Beijing(English Edition), 1997, (03) : 46 - 48
  • [24] Neural network based short-term load forecasting using weather compensation
    Chow, TWS
    Leung, CT
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) : 1736 - 1742
  • [25] A novel genetic-algorithm-based neural network for short-term load forecasting
    Ling, SH
    Leung, FHF
    Lam, HK
    Lee, YS
    Tam, PKS
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (04) : 793 - 799
  • [26] Short-term Load Forecasting Based on Elman Neural Network Optimized by Bayesian Algorithm
    Luo, Geshuai
    Shen, Zhanwei
    Zhou, Shiyang
    Mei, Kai
    2024 6TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES 2024, 2024, : 213 - 218
  • [27] Short-term load forecasting using artificial neural network based on particle swarm optimization algorithm
    Bashir, Z. A.
    El-Hawary, M. E.
    2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, 2007, : 272 - 275
  • [28] Machine Learning Approach for Short-Term Load Forecasting Using Deep Neural Network
    Alotaibi, Majed A.
    ENERGIES, 2022, 15 (17)
  • [29] Short-Term Load Forecasting Based on Deep Learning Bidirectional LSTM Neural Network
    Cai, Changchun
    Tao, Yuan
    Zhu, Tianqi
    Deng, Zhixiang
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [30] Short Term Load Forecasting by Adaptive Neural Network
    Li, Hong
    2018 2ND INTERNATIONAL CONFERENCE ON AEROSPACE TECHNOLOGY, COMMUNICATIONS AND ENERGY SYSTEMS (ATCES 2018), 2018, 449