The Multifaceted Reactivity of Single-Atom Heterogeneous Catalysts

被引:285
|
作者
Mitchell, Sharon [1 ]
Vorobyeva, Evgeniya [1 ]
Perez-Ramirez, Javier [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Inst Chem & Bioengn, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
heterogeneous catalysis; homogeneous catalysis; single atoms; structure performance relationships; sustainable chemistry; WATER-GAS SHIFT; ATOMICALLY DISPERSED PLATINUM; SELECTIVE AEROBIC OXIDATION; N-DOPED CARBON; CO OXIDATION; ACTIVE-SITES; HYDROGEN EVOLUTION; HIGH-PERFORMANCE; RATIONAL DESIGN; PALLADIUM CATALYST;
D O I
10.1002/anie.201806936
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom heterogeneous catalysts (SACs) attached to carefully chosen hosts are attracting considerable interest; principally because they offer maximum utilization per metal atom and are usually readily recyclable. However, diminution of the atomic population of nanoparticles or nanoclusters to single atoms can significantly alter reactivity because of the consequent changes in the active-site structure. By examining various diverse applications, we ascertain whether the performance of SACs is enhanced or suppressed. We also note that SACs generally display unique kinds of catalytic cycles. The choice of host is crucial since it influences both the electronic and steric environment of the metal center. Moreover, it may function as a cocatalyst. All these aspects impact upon the design of new SACs, which exhibit similarities to hetero- and homogeneous predecessors. Additionally, SACs offer a viable replacement of soluble metal complexes in processes that remain difficult to heterogenize.
引用
收藏
页码:15316 / 15329
页数:14
相关论文
共 50 条
  • [41] Structural evolution of single-atom catalysts
    Zhang, Leilei
    Yang, Ji
    Yang, Xiaofeng
    Wang, Aiqin
    Zhang, Tao
    CHEM CATALYSIS, 2023, 3 (03):
  • [42] Nanomotors driven by single-atom catalysts
    Chen, Shuai
    Wang, Jianhong
    Cao, Shoupeng
    Al-Hilfi, Samir H.
    Yang, Juan
    Bonn, Mischa
    van Hest, Jan C. M.
    Shao, Jingxin
    Mullen, Klaus
    Zhou, Yazhou
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (04):
  • [43] Single-atom catalysts for hydroformylation of olefins
    Tao, Shu
    Yang, Da
    Wang, Minmin
    Sun, Guangxun
    Xiong, Gaoyan
    Gao, Wenwen
    Zhang, Youzhi
    Pan, Yuan
    ISCIENCE, 2023, 26 (03)
  • [44] Theoretical insights into single-atom catalysts
    McCardle, Kaitlin
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (03): : 138 - 138
  • [45] Single-atom Automobile Exhaust Catalysts
    Lu, Yubing
    Zhang, Zihao
    Lin, Fan
    Wang, Huamin
    Wang, Yong
    CHEMNANOMAT, 2020, 6 (12) : 1659 - 1682
  • [46] Theoretical insights into single-atom catalysts
    Li, Lulu
    Chang, Xin
    Lin, Xiaoyun
    Zhao, Zhi-Jian
    Gong, Jinlong
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (22) : 8156 - 8178
  • [47] Single-atom catalysts gained a toehold
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2016, 94 (49) : 29 - 29
  • [48] Biomedical Applications of Single-atom Catalysts
    Yuan, Zhongwen
    He, Lizhen
    Chen, Tianfeng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (12): : 2690 - 2709
  • [49] Transforming Energy with Single-Atom Catalysts
    Ding, Shipeng
    Hulsey, Max J.
    Perez-Ramirez, Javier
    Yang, Ning
    JOULE, 2019, 3 (12) : 2897 - 2929
  • [50] On the Tracks to "Smart" Single-Atom Catalysts
    Melchionna, Michele
    Fornasiero, Paolo
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (03) : 2275 - 2290