Design and development of a very high-resolution thermal imager

被引:0
|
作者
Kürbitz, G [1 ]
Duchâteau, R [1 ]
机构
[1] Zeiss Electro Optron GMBH, D-73447 Oberkochen, Germany
关键词
High Definition TeleVision standard HDTV; Non Uniformity Correction NUC; parallel scan; scanner; thermal imaging; Time Delay and Integration TDI;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 mu m spectral region. The detector for that system has to have 576 x n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimised in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced 2(nd) generation thermal imager the system has an internal thermal reference. The electronics is fully digitised and comprises circuits for Non Uniformity Correction (NUC),scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [11] The High-Resolution Coronal Imager, Flight 2.1
    Rachmeler, Laurel A.
    Winebarger, Amy R.
    Savage, Sabrina L.
    Golub, Leon
    Kobayashi, Ken
    Vigil, Genevieve D.
    Brooks, David H.
    Cirtain, Jonathan W.
    De Pontieu, Bart
    McKenzie, David E.
    Morton, Richard J.
    Peter, Hardi
    Testa, Paola
    Tiwari, Sanjiv K.
    Walsh, Robert W.
    Warren, Harry P.
    Alexander, Caroline
    Ansell, Darren
    Beabout, Brent L.
    Beabout, Dyana L.
    Bethge, Christian W.
    Champey, Patrick R.
    Cheimets, Peter N.
    Cooper, Mark A.
    Creel, Helen K.
    Gates, Richard
    Gomez, Carlos
    Guillory, Anthony
    Haight, Harlan
    Hogue, William D.
    Holloway, Todd
    Hyde, David W.
    Kenyon, Richard
    Marshall, Joseph N.
    McCracken, Jeff E.
    McCracken, Kenneth
    Mitchell, Karen O.
    Ordway, Mark
    Owen, Tim
    Ranganathan, Jagan
    Robertson, Bryan A.
    Payne, M. Janie
    Podgorski, William
    Pryor, Jonathan
    Samra, Jenna
    Sloan, Mark D.
    Soohoo, Howard A.
    Steele, D. Brandon
    Thompson, Furman V.
    Thornton, Gary S.
    SOLAR PHYSICS, 2019, 294 (12)
  • [12] FEASIBILITY OF A HIGH-RESOLUTION BRAIN SPECT IMAGER
    ROGULSKI, MM
    BARRETT, HH
    SHOEMAKER, RL
    JOURNAL OF NUCLEAR MEDICINE, 1993, 34 (05) : P27 - P27
  • [13] The High-Resolution Coronal Imager, Flight 2.1
    Laurel A. Rachmeler
    Amy R. Winebarger
    Sabrina L. Savage
    Leon Golub
    Ken Kobayashi
    Genevieve D. Vigil
    David H. Brooks
    Jonathan W. Cirtain
    Bart De Pontieu
    David E. McKenzie
    Richard J. Morton
    Hardi Peter
    Paola Testa
    Sanjiv K. Tiwari
    Robert W. Walsh
    Harry P. Warren
    Caroline Alexander
    Darren Ansell
    Brent L. Beabout
    Dyana L. Beabout
    Christian W. Bethge
    Patrick R. Champey
    Peter N. Cheimets
    Mark A. Cooper
    Helen K. Creel
    Richard Gates
    Carlos Gomez
    Anthony Guillory
    Harlan Haight
    William D. Hogue
    Todd Holloway
    David W. Hyde
    Richard Kenyon
    Joseph N. Marshall
    Jeff E. McCracken
    Kenneth McCracken
    Karen O. Mitchell
    Mark Ordway
    Tim Owen
    Jagan Ranganathan
    Bryan A. Robertson
    M. Janie Payne
    William Podgorski
    Jonathan Pryor
    Jenna Samra
    Mark D. Sloan
    Howard A. Soohoo
    D. Brandon Steele
    Furman V. Thompson
    Gary S. Thornton
    Solar Physics, 2019, 294
  • [14] Design and realization of a very high-resolution FIB nanofabrication instrument
    Gierak, J
    Septier, A
    Vieu, C
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 427 (1-2): : 91 - 98
  • [15] Catadioptric optics for high-resolution terahertz imager
    Blanchard, Nathalie
    Marchese, Linda
    Martel, Anne
    Terroux, Marc
    Savard, Eric
    Chevalier, Claude
    Mercier, Luc
    Gagnon, Lucie
    Lambert, Julie
    Bolduc, Martin
    Bergeron, Alain
    TERAHERTZ PHYSICS, DEVICES, AND SYSTEMS VI: ADVANCED APPLICATIONS IN INDUSTRY AND DEFENSE, 2012, 8363
  • [16] Development of the High-Resolution Scintillator Type Imager Using Si GRID Structures
    Tabata, K.
    Ohtake, R.
    Nishizawa, J.
    Koike, A.
    Aoki, T.
    4TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGIES AND BIOMEDICAL ENGINEERING, ICNBME-2019, 2020, 77 : 731 - 734
  • [17] The development of a wide-field, high-resolution UV Raman hyperspectral imager
    Gomer, Nathaniel R.
    Nelson, Matthew P.
    Angel, S. Michael
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XVI, 2015, 9455
  • [18] An explanation of the ROAST high-resolution imager ultraviolet sensitivity
    Zombeck, MV
    Barbera, M
    Collura, A
    Murray, SS
    ASTROPHYSICAL JOURNAL, 1997, 487 (01): : L69 - L72
  • [19] ATMOSPHERIC WIND MEASUREMENTS WITH THE HIGH-RESOLUTION DOPPLER IMAGER
    GRASSL, HJ
    SKINNER, WR
    HAYS, PB
    GELL, DA
    BURRAGE, MD
    ORTLAND, DA
    MARSHALL, AR
    ABREU, VJ
    JOURNAL OF SPACECRAFT AND ROCKETS, 1995, 32 (01) : 169 - 176
  • [20] A dedicated high-resolution PET imager for plant sciences
    Wang, Qiang
    Mathews, Aswin J.
    Li, Ke
    Wen, Jie
    Komarov, Sergey
    O'Sullivan, Joseph A.
    Tai, Yuan-Chuan
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (19): : 5613 - 5629