Fractal Poisson processes

被引:8
|
作者
Eliazar, Iddo [1 ]
Klafter, Joseph [2 ]
机构
[1] Holon Inst Technol, Dept Technol Management, IL-58102 Holon, Israel
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
关键词
fractal Poisson processes; stochastic limit-laws; nonlinear scaling; power-laws; self-similarity; Central Limit Theorem (CLT); Extreme Value Theory (EVT);
D O I
10.1016/j.physa.2008.05.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Central Limit Theorem (CLT) and Extreme Value Theory (EVT) study, respectively, the stochastic limit-laws of sums and maxima of sequences of independent and identically distributed (i.i.d.) random variables via an affine scaling scheme. In this research we study the stochastic limit-laws of populations of i.i.d. random variables via nonlinear scaling schemes. The stochastic population-limits obtained are fractal Poisson processes which are statistically self-similar with respect to the scaling scheme applied, and which are characterized by two elemental structures: (i) a universal power-law structure common to all limits, and independent of the scaling scheme applied; (ii) a specific structure contingent on the scaling scheme applied. The sum-projection and the maximum-projection of the population-limits obtained are generalizations of the classic CLT and EVT results extending them from affine to general nonlinear scaling schemes. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4985 / 4996
页数:12
相关论文
共 50 条
  • [41] ON A MODIFIED SUM OF POISSON PROCESSES
    CLARKE, AB
    ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04): : 773 - 773
  • [42] POISSON APPROXIMATION OF EMPIRICAL PROCESSES
    FALK, M
    REISS, RD
    STATISTICS & PROBABILITY LETTERS, 1992, 14 (01) : 39 - 48
  • [43] Testing Homogeneity for Poisson Processes
    Fierro, Raul
    Tapia, Alejandra
    REVISTA COLOMBIANA DE ESTADISTICA, 2011, 34 (03): : 421 - 432
  • [44] A NOTE ON THE CHARACTERISTICS OF POISSON PROCESSES
    严颖
    程侃
    Acta Mathematicae Applicatae Sinica(English Series), 1984, (02) : 149 - 152
  • [45] Sphere Covering for Poisson Processes
    Shen, Hui-An
    Moser, Stefan M.
    Pfister, Jean-Pascal
    2020 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [46] Anisotropic Poisson Processes of Cylinders
    Malte Spiess
    Evgeny Spodarev
    Methodology and Computing in Applied Probability, 2011, 13 : 801 - 819
  • [47] Perturbation analysis of Poisson processes
    Last, Guenter
    BERNOULLI, 2014, 20 (02) : 486 - 513
  • [48] ON SOME CHARACTERIZATIONS OF THE POISSON PROCESSES
    HUANG, WJ
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 26 (02) : 189 - 189
  • [49] ON NONHOMOGENEOUS, SPATIAL POISSON PROCESSES
    MCDONALD, D
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 183 - 195
  • [50] Speech Parts as Poisson Processes
    Anthony F. Badalamenti
    Journal of Psycholinguistic Research, 2001, 30 : 497 - 527