Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species

被引:25
|
作者
Huang, Wei [1 ]
Zhang, Ting [1 ]
Hu, Xiaoya [1 ]
Wang, Yang [1 ]
Wang, Jianmin [2 ]
机构
[1] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
[2] Third Mil Med Univ, Daping Hosp, Inst Surg Res, State Key Lab Trauma Burns & Combined Injury, Chongqing 400042, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic framework; ZIF-8; Nitrogen doping; Electrochemical sensor; Cyclic voltammetry; Differential pulse voltammetry; VOLTAMMETRIC DETERMINATION; HYDROGEN STORAGE; REDUCED GRAPHENE; COMPOSITE; FRAMEWORK; PLATFORM; ZIF-8; OXIDE; NANOPARTICLES; REDOX;
D O I
10.1007/s00604-017-2538-z
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A porous carbon material doped with an iron species (Fe/PC) was prepared by carbonizing a mixture of zeolitic imidazolate framework-8 in the presence of iron(II) ions. The resulting material was characterized by X-ray diffraction, nitrogen adsorption isotherms, transmission electron microscopy, and by Raman and X-ray photoelectron spectroscopy. Fe/PC was the deposited on the surface of glassy carbon electrode (GCE) to obtain a sensor for amperometric determination of phenolic compounds. The unique catalytic activity, good electrical conductivity and hierarchical structure of the Fe/PC composite results in good electrooxidative activity towards hydroquinone (HQ; typically at 44 mV) and catechol (CC; typically at 160 mV). Under optimal conditions, the amperometric responses are linear in the range from 0.1 to 120 mu mol.L-1 for HQ, and from 1.0 to 120 mu mol.L-1 for CC. The respective detection limits are 14 and 33 nmol.L-1. The sensor is highly selective against potential interferents and was successfully applied to the determination of HQ and CC contents in (spiked) water samples.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species
    Wei Huang
    Ting Zhang
    Xiaoya Hu
    Yang Wang
    Jianmin Wang
    Microchimica Acta, 2018, 185
  • [2] Determination of Catechol and Hydroquinone by Using Perilla frutescens Activated Carbon Modified Glassy Carbon Electrode
    Zheng, Meiqin
    Zhu, Jingjing
    Fan, Rongrong
    Wang, Yujie
    Lv, Zhaojun
    Han, Yongming
    Peng, Jun
    Zheng, Xinyu
    Lin, Ruiyu
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2020, 31 (01) : 25 - 32
  • [3] Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes
    Qi, HL
    Zhang, CX
    ELECTROANALYSIS, 2005, 17 (10) : 832 - 838
  • [4] Simultaneous determination of hydroquinone and catechol using a modified glassy carbon electrode by ruthenium red/carbon nanotube
    Mohammad Mehdi Foroughi
    Meissam Noroozifar
    Mozhgan Khorasani-Motlagh
    Journal of the Iranian Chemical Society, 2015, 12 : 1139 - 1147
  • [5] Simultaneous determination of hydroquinone and catechol using a modified glassy carbon electrode by ruthenium red/carbon nanotube
    Foroughi, Mohammad Mehdi
    Noroozifar, Meissam
    Khorasani-Motlagh, Mozhgan
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2015, 12 (07) : 1139 - 1147
  • [6] Voltammetric determination of catechol and hydroquinone at poly (murexide) modified glassy carbon electrode
    Kumar, A. Anil
    Swamy, B. E. Kumara
    Rani, T. Shobha
    Ganesh, P. S.
    Raj, Y. Paul
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 98 : 746 - 752
  • [7] Voltammetric determination of catechol and hydroquinone at poly (niacinamide) modified glassy carbon electrode
    Kumar, A. Anil
    Swamy, B. E. Kumara
    Ganesh, P. S.
    Rani, T. Shobha
    Reddy, G. Venkata
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 : 505 - 511
  • [8] Nitrogen, Sulfur Dual-Doped Mesoporous Carbon Modified Glassy Carbon Electrode for Simultaneous Determination of Hydroquinone and Catechol
    Xu, Ruiyu
    Xiao, Lili
    Luo, Liang
    Yuan, Qunhui
    Qin, Danfeng
    Hu, Guangzhi
    Gan, Wei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (13) : B617 - B623
  • [9] Simultaneous Determination of Hydroquinone and Catechol at an Activated Glassy Carbon Electrode
    Ahammad, A. J. Saleh
    Sarker, Subrata
    Rahman, Md Aminur
    Lee, Jae-Joon
    ELECTROANALYSIS, 2010, 22 (06) : 694 - 700
  • [10] Simultaneous Determination of Catechol and Hydroquinone Based on Fluorinated Graphite Modified Glassy Carbon Electrode
    Ma Zhen-Hua
    Wang Hui-Cai
    Yao Xiao-Xia
    Liu Ming-Qiang
    Ma Yu-Qiang
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 43 (12) : 1906 - 1912