Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery

被引:82
|
作者
Rodriguez-Perez, Raquel [1 ,2 ]
Bajorath, Juergen [1 ,2 ]
机构
[1] Rheinische Friedrich Wilhelms Univ, Dept Life Sci Informat, LIMES Program Unit Chem Biol & Med Chem, B IT, Friedrich Hirzebruch Allee 6, D-53115 Bonn, Germany
[2] Novartis Inst Biomed Res, Novartis Campus, CH-4002 Basel, Switzerland
关键词
Support vector machines; Machine learning; Compound classification; Property prediction; Regression; ACTIVITY CLIFFS; PREDICTION; CLASSIFICATION; REPRESENTATIONS; INFORMATION; INHIBITORS;
D O I
10.1007/s10822-022-00442-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is that it operates in feature spaces of increasing dimensionality. Hence, SVM conceptually departs from the paradigm of low dimensionality that applies to many other methods for chemical space navigation. The SVM approach is applicable to compound classification, and ranking, multi-class predictions, and -in algorithmically modified form- regression modeling. In the emerging era of deep learning (DL), SVM retains its relevance as one of the premier ML methods in chemoinformatics, for reasons discussed herein. We describe the SVM methodology including strengths and weaknesses and discuss selected applications that have contributed to the evolution of SVM as a premier approach for compound classification, property predictions, and virtual compound screening.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 50 条
  • [31] A rough ν-twin support vector regression machine
    Xue, Zhenxia
    Zhang, Roxin
    Qin, Chuandong
    Zeng, Xiaoqing
    APPLIED INTELLIGENCE, 2018, 48 (11) : 4023 - 4046
  • [32] Fuzzy support vector machine for regression estimation
    Sun, ZH
    Sun, YX
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 3336 - 3341
  • [33] Comparison of the support vector machine and relevant vector machine in regression and classification problems
    Yu, WM
    Du, TH
    Lim, KB
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 1309 - 1314
  • [34] The chaos differential evolution optimization algorithm and its application to support vector regression machine
    Liang W.
    Zhang L.
    Wang M.
    Journal of Software, 2011, 6 (07) : 1297 - 1304
  • [35] Disaster prediction model based on support vector machine for regression and improved differential evolution
    Xiaobing Yu
    Natural Hazards, 2017, 85 : 959 - 976
  • [36] Disaster prediction model based on support vector machine for regression and improved differential evolution
    Yu, Xiaobing
    NATURAL HAZARDS, 2017, 85 (02) : 959 - 976
  • [37] Privacy-Preserving Outsourced Support Vector Machine Design for Secure Drug Discovery
    Liu, Ximeng
    Deng, Robert H.
    Choo, Kim-Kwang Raymond
    Yang, Yang
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2020, 8 (02) : 610 - 622
  • [38] Modeling a PEMFC by a support vector machine
    Zhong, Zhi-Dan
    Zhu, Xin-Jian
    Cao, Guang-Yi
    JOURNAL OF POWER SOURCES, 2006, 160 (01) : 293 - 298
  • [39] Support Vector Machine and Gaussian Process Regression based Modeling for Photovoltaic Power Prediction
    Kanwal, Sidra
    Khan, Bilal
    Ali, Sahibzada Muhammad
    Mehmood, Chaudhry Arshad
    Rauf, Muhammad Qasim
    2018 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2018), 2018, : 117 - 122
  • [40] Modeling of Proton Exchange Membrane Fuel Cell Using Support Vector Regression Machine
    Tang, Jiangling
    Huang, Jian
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS, 2015, 21 : 380 - 385