A variable-selection heuristic for K-means clustering

被引:98
|
作者
Brusco, MJ [1 ]
Cradit, JD [1 ]
机构
[1] Florida State Univ, Coll Business, Dept Mkt, Tallahassee, FL 32306 USA
关键词
cluster analysis; K-means partitioning; variable selection; heuristics;
D O I
10.1007/BF02294838
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the most vexing problems in cluster analysis is the selection and/or weighting of variables in order to include those that truly define cluster structure, while eliminating those that might mask such structure. This paper presents a variable-selection heuristic For nonhierarchical (K-means) cluster analysis based on the adjusted Rand index for measuring cluster recovery. The heuristic was subjected to Monte Carlo testing across more than 2200 datasets with known cluster structure. The results indicate the heuristic is extremely effective at eliminating masking variables. A cluster analysis of real-world financial services data revealed that using the variable-selection heuristic prior to the K-means algorithm resulted in greater cluster stability.
引用
收藏
页码:249 / 270
页数:22
相关论文
共 50 条
  • [41] K-means clustering on CGRA
    Lopes, Joao D.
    de Sousa, Jose T.
    Neto, Horacio
    Vestias, Mario
    2017 27TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2017,
  • [42] k-means clustering of extremes
    Janssen, Anja
    Wan, Phyllis
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1211 - 1233
  • [43] Online k-means Clustering
    Cohen-Addad, Vincent
    Guedj, Benjamin
    Kanade, Varun
    Rom, Guy
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [44] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [45] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [46] PSO Aided k-Means Clustering: Introducing Connectivity in k-Means
    Breaban, Mihaela Elena
    Luchian, Henri
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1227 - 1234
  • [47] A PRELIMINARY-STUDY OF OPTIMAL VARIABLE WEIGHTING IN K-MEANS CLUSTERING
    GREEN, PE
    CARMONE, FJ
    KIM, J
    JOURNAL OF CLASSIFICATION, 1990, 7 (02) : 271 - 285
  • [48] Variable Weighting in Fuzzy k-Means Clustering to Determine the Number of Clusters
    Khan, Imran
    Luo, Zongwei
    Huang, Joshua Zhexue
    Shahzad, Waseem
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (09) : 1838 - 1853
  • [49] Generalized Variable Conversion Using K-means Clustering and Web Scraping
    Modarresi, Kourosh
    Munir, Abdurrahman
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 247 - 258
  • [50] Improved Initial Clustering Center Selection Method for k-means Algorithm
    Xie, Qingqing
    Jiang, He
    Han, Bing
    Wang, Dongyuan
    2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 1092 - 1095